Cargando…
QFlow lite dataset: A machine-learning approach to the charge states in quantum dot experiments
BACKGROUND: Over the past decade, machine learning techniques have revolutionized how research and science are done, from designing new materials and predicting their properties to data mining and analysis to assisting drug discovery to advancing cybersecurity. Recently, we added to this list by sho...
Autores principales: | Zwolak, Justyna P., Kalantre, Sandesh S., Wu, Xingyao, Ragole, Stephen, Taylor, Jacob M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6192646/ https://www.ncbi.nlm.nih.gov/pubmed/30332463 http://dx.doi.org/10.1371/journal.pone.0205844 |
Ejemplares similares
-
Fast and easy visualization of blood flow patterns in 4D Qflow MRI
por: Sinha, Vikas, et al.
Publicado: (2012) -
All-optical charging and charge transport in quantum dots
por: Hastrup, Jacob, et al.
Publicado: (2020) -
Detection and control of charge states in a quintuple quantum dot
por: Ito, Takumi, et al.
Publicado: (2016) -
MLife: a lite framework for machine learning lifecycle initialization
por: Yang, Cong, et al.
Publicado: (2021) -
Lite and Efficient Deep Learning Model for Bearing Fault Diagnosis Using the CWRU Dataset
por: Yoo, Yubin, et al.
Publicado: (2023)