Cargando…

Nkd2 promotes the differentiation of dental follicle stem/progenitor cells into osteoblasts

Dental follicle stem/progenitor cells have the potential to undergo osteogenesis. naked cuticle homolog 2 (Nkd2) is a signal-inducible feedback antagonist of the canonical Wnt signaling pathway. The purpose of the present study was to investigate the function of Nkd2 in the differentiation of dental...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Chanchan, Zhang, Jianying, Ling, Junqi, Du, Yu, Hou, Yuluan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6192769/
https://www.ncbi.nlm.nih.gov/pubmed/30106129
http://dx.doi.org/10.3892/ijmm.2018.3822
Descripción
Sumario:Dental follicle stem/progenitor cells have the potential to undergo osteogenesis. naked cuticle homolog 2 (Nkd2) is a signal-inducible feedback antagonist of the canonical Wnt signaling pathway. The purpose of the present study was to investigate the function of Nkd2 in the differentiation of dental follicle stem/progenitor cells (DFSCs) into osteoblasts. Immunohistochemistry, reverse transcription-quantitative polymerase chain reaction and western blotting were employed to detect Nkd2 expression in rat DFSCs. In addition, rat DFSCs (rDFSCs) were transfected with small interfering RNAs to examine the effect of Nkd2 on the differentiation of these cells into osteoblasts. Furthermore, the function of Nkd2 in the Wnt/β-catenin pathway in rDFSCs was investigated using β-catenin/T-cell factor luciferase activity assays and western blotting. It was revealed that the expression of Nkd2 was upregulated during the differentiation of rDFSCs into osteoblasts. Furthermore, osteoblast differentiation ability and Wnt/β-catenin pathway activity were significantly decreased in Nkd2-silenced rDFSCs compared with the si-NC group (P<0.05 and P<0.001, respectively). The results suggest that Nkd2 promotes the differentiation of rDFSCs into osteoblasts through Wnt/β-catenin signaling.