Cargando…
Meta-analysis of prediction model performance across multiple studies: Which scale helps ensure between-study normality for the C-statistic and calibration measures?
If individual participant data are available from multiple studies or clusters, then a prediction model can be externally validated multiple times. This allows the model’s discrimination and calibration performance to be examined across different settings. Random-effects meta-analysis can then be us...
Autores principales: | Snell, Kym IE, Ensor, Joie, Debray, Thomas PA, Moons, Karel GM, Riley, Richard D |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6193210/ https://www.ncbi.nlm.nih.gov/pubmed/28480827 http://dx.doi.org/10.1177/0962280217705678 |
Ejemplares similares
-
Multivariate meta-analysis of individual participant data helped externally validate the performance and implementation of a prediction model
por: Snell, Kym I.E., et al.
Publicado: (2016) -
Minimum sample size for developing a multivariable prediction model: PART II ‐ binary and time‐to‐event outcomes
por: Riley, Richard D, et al.
Publicado: (2018) -
External validation of clinical prediction models: simulation-based sample size calculations were more reliable than rules-of-thumb
por: Snell, Kym I.E., et al.
Publicado: (2021) -
External validation of clinical prediction models using big datasets from
e-health records or IPD meta-analysis: opportunities and challenges
por: Riley, Richard D, et al.
Publicado: (2016) -
A framework for meta-analysis of prediction model studies with binary
and time-to-event outcomes
por: Debray, Thomas PA, et al.
Publicado: (2018)