Cargando…

Importance of diphthamide modified EF2 for translational accuracy and competitive cell growth in yeast

In eukaryotes, the modification of an invariant histidine (His-699 in yeast) residue in translation elongation factor 2 (EF2) with diphthamide involves a conserved pathway encoded by the DPH1-DPH7 gene network. Diphthamide is the target for diphtheria toxin and related lethal ADP ribosylases, which...

Descripción completa

Detalles Bibliográficos
Autores principales: Hawer, Harmen, Ütkür, Koray, Arend, Meike, Mayer, Klaus, Adrian, Lorenz, Brinkmann, Ulrich, Schaffrath, Raffael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6193676/
https://www.ncbi.nlm.nih.gov/pubmed/30335802
http://dx.doi.org/10.1371/journal.pone.0205870
_version_ 1783364105604694016
author Hawer, Harmen
Ütkür, Koray
Arend, Meike
Mayer, Klaus
Adrian, Lorenz
Brinkmann, Ulrich
Schaffrath, Raffael
author_facet Hawer, Harmen
Ütkür, Koray
Arend, Meike
Mayer, Klaus
Adrian, Lorenz
Brinkmann, Ulrich
Schaffrath, Raffael
author_sort Hawer, Harmen
collection PubMed
description In eukaryotes, the modification of an invariant histidine (His-699 in yeast) residue in translation elongation factor 2 (EF2) with diphthamide involves a conserved pathway encoded by the DPH1-DPH7 gene network. Diphthamide is the target for diphtheria toxin and related lethal ADP ribosylases, which collectively kill cells by inactivating the essential translocase function of EF2 during mRNA translation and protein biosynthesis. Although this notion emphasizes the pathological importance of diphthamide, precisely why cells including our own require EF2 to carry it, is unclear. Mining the synthetic genetic array (SGA) landscape from the budding yeast Saccharomyces cerevisiae has revealed negative interactions between EF2 (EFT1-EFT2) and diphthamide (DPH1-DPH7) gene deletions. In line with these correlations, we confirm in here that loss of diphthamide modification (dphΔ) on EF2 combined with EF2 undersupply (eft2Δ) causes synthetic growth phenotypes in the composite mutant (dphΔ eft2Δ). These reflect negative interference with cell performance under standard as well as thermal and/or chemical stress conditions, cell growth rates and doubling times, competitive fitness, cell viability in the presence of TOR inhibitors (rapamycin, caffeine) and translation indicator drugs (hygromycin, anisomycin). Together with significantly suppressed tolerance towards EF2 inhibition by cytotoxic DPH5 overexpression and increased ribosomal -1 frame-shift errors in mutants lacking modifiable pools of EF2 (dphΔ, dphΔ eft2Δ), our data indicate that diphthamide is important for the fidelity of the EF2 translocation function during mRNA translation.
format Online
Article
Text
id pubmed-6193676
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-61936762018-11-05 Importance of diphthamide modified EF2 for translational accuracy and competitive cell growth in yeast Hawer, Harmen Ütkür, Koray Arend, Meike Mayer, Klaus Adrian, Lorenz Brinkmann, Ulrich Schaffrath, Raffael PLoS One Research Article In eukaryotes, the modification of an invariant histidine (His-699 in yeast) residue in translation elongation factor 2 (EF2) with diphthamide involves a conserved pathway encoded by the DPH1-DPH7 gene network. Diphthamide is the target for diphtheria toxin and related lethal ADP ribosylases, which collectively kill cells by inactivating the essential translocase function of EF2 during mRNA translation and protein biosynthesis. Although this notion emphasizes the pathological importance of diphthamide, precisely why cells including our own require EF2 to carry it, is unclear. Mining the synthetic genetic array (SGA) landscape from the budding yeast Saccharomyces cerevisiae has revealed negative interactions between EF2 (EFT1-EFT2) and diphthamide (DPH1-DPH7) gene deletions. In line with these correlations, we confirm in here that loss of diphthamide modification (dphΔ) on EF2 combined with EF2 undersupply (eft2Δ) causes synthetic growth phenotypes in the composite mutant (dphΔ eft2Δ). These reflect negative interference with cell performance under standard as well as thermal and/or chemical stress conditions, cell growth rates and doubling times, competitive fitness, cell viability in the presence of TOR inhibitors (rapamycin, caffeine) and translation indicator drugs (hygromycin, anisomycin). Together with significantly suppressed tolerance towards EF2 inhibition by cytotoxic DPH5 overexpression and increased ribosomal -1 frame-shift errors in mutants lacking modifiable pools of EF2 (dphΔ, dphΔ eft2Δ), our data indicate that diphthamide is important for the fidelity of the EF2 translocation function during mRNA translation. Public Library of Science 2018-10-18 /pmc/articles/PMC6193676/ /pubmed/30335802 http://dx.doi.org/10.1371/journal.pone.0205870 Text en © 2018 Hawer et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Hawer, Harmen
Ütkür, Koray
Arend, Meike
Mayer, Klaus
Adrian, Lorenz
Brinkmann, Ulrich
Schaffrath, Raffael
Importance of diphthamide modified EF2 for translational accuracy and competitive cell growth in yeast
title Importance of diphthamide modified EF2 for translational accuracy and competitive cell growth in yeast
title_full Importance of diphthamide modified EF2 for translational accuracy and competitive cell growth in yeast
title_fullStr Importance of diphthamide modified EF2 for translational accuracy and competitive cell growth in yeast
title_full_unstemmed Importance of diphthamide modified EF2 for translational accuracy and competitive cell growth in yeast
title_short Importance of diphthamide modified EF2 for translational accuracy and competitive cell growth in yeast
title_sort importance of diphthamide modified ef2 for translational accuracy and competitive cell growth in yeast
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6193676/
https://www.ncbi.nlm.nih.gov/pubmed/30335802
http://dx.doi.org/10.1371/journal.pone.0205870
work_keys_str_mv AT hawerharmen importanceofdiphthamidemodifiedef2fortranslationalaccuracyandcompetitivecellgrowthinyeast
AT utkurkoray importanceofdiphthamidemodifiedef2fortranslationalaccuracyandcompetitivecellgrowthinyeast
AT arendmeike importanceofdiphthamidemodifiedef2fortranslationalaccuracyandcompetitivecellgrowthinyeast
AT mayerklaus importanceofdiphthamidemodifiedef2fortranslationalaccuracyandcompetitivecellgrowthinyeast
AT adrianlorenz importanceofdiphthamidemodifiedef2fortranslationalaccuracyandcompetitivecellgrowthinyeast
AT brinkmannulrich importanceofdiphthamidemodifiedef2fortranslationalaccuracyandcompetitivecellgrowthinyeast
AT schaffrathraffael importanceofdiphthamidemodifiedef2fortranslationalaccuracyandcompetitivecellgrowthinyeast