Cargando…
Novel Physical Vapor Deposition Approach to Hybrid Perovskites: Growth of MAPbI(3) Thin Films by RF-Magnetron Sputtering
Solution-based methods represent the most widespread approach used to deposit hybrid organic-inorganic perovskite films for low-cost but efficient solar cells. However, solution-process techniques offer limited control over film morphology and crystallinity, and most importantly do not allow sequent...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6193984/ https://www.ncbi.nlm.nih.gov/pubmed/30337600 http://dx.doi.org/10.1038/s41598-018-33760-w |
Sumario: | Solution-based methods represent the most widespread approach used to deposit hybrid organic-inorganic perovskite films for low-cost but efficient solar cells. However, solution-process techniques offer limited control over film morphology and crystallinity, and most importantly do not allow sequential film deposition to produce perovskite-perovskite heterostructures. Here the successful deposition of CH(3)NH(3)PbI(3) (MAPI) thin films by RF-magnetron sputtering is reported, an industry-tested method to grow large area devices with precisely controlled stoichiometry. MAPI films are grown starting from a single-target made of CH(3)NH(3)I (MAI) and PbI(2). Films are single-phase, with a barely detectable content of unreacted PbI(2), full surface coverage and thickness ranging from less than 200 nm to more than 3 μm. Light absorption and emission properties of the deposited films are comparable to as-grown solution-processed MAPI films. The development of vapor-phase deposition methods is of interest to advance perovskite photovoltaic devices with the possibility of fabricating perovskite multijunction solar cells or multicolor bright light-emitting devices in the whole visible spectrum. |
---|