Cargando…
Functional EEG connectivity during competition
BACKGROUND: Social behavior and interactions pervasively shape and influence our lives and relationships. Competition, in particular, has become a core topic in social neuroscience since it stresses the relevance and salience of social comparison processes between the inter-agents that are involved...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6194561/ https://www.ncbi.nlm.nih.gov/pubmed/30336786 http://dx.doi.org/10.1186/s12868-018-0464-6 |
Sumario: | BACKGROUND: Social behavior and interactions pervasively shape and influence our lives and relationships. Competition, in particular, has become a core topic in social neuroscience since it stresses the relevance and salience of social comparison processes between the inter-agents that are involved in a common task. The majority of studies, however, investigated such kind of social interaction via one-person individual paradigms, thus not taking into account relevant information concerning interdependent participants’ behavioral and neural responses. In the present study, dyads of volunteers participated in a hyperscanning paradigm and competed in a computerized attention task while their electrophysiological (EEG) activity and performance were monitored and recorded. Behavioral data and inter-brain coupling measures based on EEG frequency data were then computed and compared across different experimental conditions: a control condition (individual task, t0), a first competitive condition (pre-feedback condition, t1), and a second competitive condition following a positive reinforcing feedback (post-feedback condition, t2). RESULTS: Results showed that during competitive tasks participants’ performance was improved with respect to control condition (reduced response times and error rates), with a further specific improvement after receiving a reinforcing feedback. Concurrently, we observed a reduction of inter-brain functional connectivity (primarily involving bilateral prefrontal areas) for slower EEG frequency bands (delta and theta). Finally, correlation analyses highlighted a significant association between cognitive performance and inter-brain connectivity measures. CONCLUSIONS: The present results may help identifying specific patterns of behavioral and inter-brain coupling measures associated to competition and processing of social reinforcements. |
---|