Cargando…

SeqOthello: querying RNA-seq experiments at scale

We present SeqOthello, an ultra-fast and memory-efficient indexing structure to support arbitrary sequence query against large collections of RNA-seq experiments. It takes SeqOthello only 5 min and 19.1 GB memory to conduct a global survey of 11,658 fusion events against 10,113 TCGA Pan-Cancer RNA-s...

Descripción completa

Detalles Bibliográficos
Autores principales: Yu, Ye, Liu, Jinpeng, Liu, Xinan, Zhang, Yi, Magner, Eamonn, Lehnert, Erik, Qian, Chen, Liu, Jinze
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6194578/
https://www.ncbi.nlm.nih.gov/pubmed/30340508
http://dx.doi.org/10.1186/s13059-018-1535-9
_version_ 1783364251870560256
author Yu, Ye
Liu, Jinpeng
Liu, Xinan
Zhang, Yi
Magner, Eamonn
Lehnert, Erik
Qian, Chen
Liu, Jinze
author_facet Yu, Ye
Liu, Jinpeng
Liu, Xinan
Zhang, Yi
Magner, Eamonn
Lehnert, Erik
Qian, Chen
Liu, Jinze
author_sort Yu, Ye
collection PubMed
description We present SeqOthello, an ultra-fast and memory-efficient indexing structure to support arbitrary sequence query against large collections of RNA-seq experiments. It takes SeqOthello only 5 min and 19.1 GB memory to conduct a global survey of 11,658 fusion events against 10,113 TCGA Pan-Cancer RNA-seq datasets. The query recovers 92.7% of tier-1 fusions curated by TCGA Fusion Gene Database and reveals 270 novel occurrences, all of which are present as tumor-specific. By providing a reference-free, alignment-free, and parameter-free sequence search system, SeqOthello will enable large-scale integrative studies using sequence-level data, an undertaking not previously practicable for many individual labs. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13059-018-1535-9) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-6194578
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-61945782018-10-25 SeqOthello: querying RNA-seq experiments at scale Yu, Ye Liu, Jinpeng Liu, Xinan Zhang, Yi Magner, Eamonn Lehnert, Erik Qian, Chen Liu, Jinze Genome Biol Method We present SeqOthello, an ultra-fast and memory-efficient indexing structure to support arbitrary sequence query against large collections of RNA-seq experiments. It takes SeqOthello only 5 min and 19.1 GB memory to conduct a global survey of 11,658 fusion events against 10,113 TCGA Pan-Cancer RNA-seq datasets. The query recovers 92.7% of tier-1 fusions curated by TCGA Fusion Gene Database and reveals 270 novel occurrences, all of which are present as tumor-specific. By providing a reference-free, alignment-free, and parameter-free sequence search system, SeqOthello will enable large-scale integrative studies using sequence-level data, an undertaking not previously practicable for many individual labs. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13059-018-1535-9) contains supplementary material, which is available to authorized users. BioMed Central 2018-10-19 /pmc/articles/PMC6194578/ /pubmed/30340508 http://dx.doi.org/10.1186/s13059-018-1535-9 Text en © The Author(s). 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Method
Yu, Ye
Liu, Jinpeng
Liu, Xinan
Zhang, Yi
Magner, Eamonn
Lehnert, Erik
Qian, Chen
Liu, Jinze
SeqOthello: querying RNA-seq experiments at scale
title SeqOthello: querying RNA-seq experiments at scale
title_full SeqOthello: querying RNA-seq experiments at scale
title_fullStr SeqOthello: querying RNA-seq experiments at scale
title_full_unstemmed SeqOthello: querying RNA-seq experiments at scale
title_short SeqOthello: querying RNA-seq experiments at scale
title_sort seqothello: querying rna-seq experiments at scale
topic Method
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6194578/
https://www.ncbi.nlm.nih.gov/pubmed/30340508
http://dx.doi.org/10.1186/s13059-018-1535-9
work_keys_str_mv AT yuye seqothelloqueryingrnaseqexperimentsatscale
AT liujinpeng seqothelloqueryingrnaseqexperimentsatscale
AT liuxinan seqothelloqueryingrnaseqexperimentsatscale
AT zhangyi seqothelloqueryingrnaseqexperimentsatscale
AT magnereamonn seqothelloqueryingrnaseqexperimentsatscale
AT lehnerterik seqothelloqueryingrnaseqexperimentsatscale
AT qianchen seqothelloqueryingrnaseqexperimentsatscale
AT liujinze seqothelloqueryingrnaseqexperimentsatscale