Cargando…
Luminescent mesoporous nanorods as photocatalytic enzyme-like peroxidase surrogates
Herein we report on a novel inorganic peroxidase-mimicking nanocatalyst activated under blue LED photoirradiation. A novel flash-pyrolysis method has been developed for the generation of strong blue photoluminescence (PL) centers attributed to silicon and carbon-based sites within a mesoporous SBA-1...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6194581/ https://www.ncbi.nlm.nih.gov/pubmed/30429985 http://dx.doi.org/10.1039/c8sc03112f |
_version_ | 1783364252561571840 |
---|---|
author | Ortega-Liebana, M. Carmen Hueso, Jose L. Fernandez-Pacheco, Rodrigo Irusta, Silvia Santamaria, Jesus |
author_facet | Ortega-Liebana, M. Carmen Hueso, Jose L. Fernandez-Pacheco, Rodrigo Irusta, Silvia Santamaria, Jesus |
author_sort | Ortega-Liebana, M. Carmen |
collection | PubMed |
description | Herein we report on a novel inorganic peroxidase-mimicking nanocatalyst activated under blue LED photoirradiation. A novel flash-pyrolysis method has been developed for the generation of strong blue photoluminescence (PL) centers attributed to silicon and carbon-based sites within a mesoporous SBA-15 silica nanorod platform. The type of centers and their PL response can be controlled by varying the flash thermal treatment conditions. By tailoring the operating conditions the system can be driven towards the preferential generation of carbon-based luminescent centers, with or without the simultaneous generation of silicon-based centers. The properties and the nature of these luminescent centers within the mesoporous nanorods have been thoroughly corroborated by a battery of characterization techniques including fluorescence spectroscopy, X-ray photoelectron spectroscopy (XPS) and electron energy loss spectroscopy (EELS) at the local level of the structures combined with scanning transmission electron microscopy (STEM) imaging. In addition, these luminescent mesoporous nanorods have been successfully tested as robust photocatalysts able to display peroxidase-like activity and indirect glucose sensing in a wider range of pH conditions compared to the natural enzyme, especially when carbogenic dots and oxygen-deficient silica centers are simultaneously present in the structure. |
format | Online Article Text |
id | pubmed-6194581 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-61945812018-11-14 Luminescent mesoporous nanorods as photocatalytic enzyme-like peroxidase surrogates Ortega-Liebana, M. Carmen Hueso, Jose L. Fernandez-Pacheco, Rodrigo Irusta, Silvia Santamaria, Jesus Chem Sci Chemistry Herein we report on a novel inorganic peroxidase-mimicking nanocatalyst activated under blue LED photoirradiation. A novel flash-pyrolysis method has been developed for the generation of strong blue photoluminescence (PL) centers attributed to silicon and carbon-based sites within a mesoporous SBA-15 silica nanorod platform. The type of centers and their PL response can be controlled by varying the flash thermal treatment conditions. By tailoring the operating conditions the system can be driven towards the preferential generation of carbon-based luminescent centers, with or without the simultaneous generation of silicon-based centers. The properties and the nature of these luminescent centers within the mesoporous nanorods have been thoroughly corroborated by a battery of characterization techniques including fluorescence spectroscopy, X-ray photoelectron spectroscopy (XPS) and electron energy loss spectroscopy (EELS) at the local level of the structures combined with scanning transmission electron microscopy (STEM) imaging. In addition, these luminescent mesoporous nanorods have been successfully tested as robust photocatalysts able to display peroxidase-like activity and indirect glucose sensing in a wider range of pH conditions compared to the natural enzyme, especially when carbogenic dots and oxygen-deficient silica centers are simultaneously present in the structure. Royal Society of Chemistry 2018-08-24 /pmc/articles/PMC6194581/ /pubmed/30429985 http://dx.doi.org/10.1039/c8sc03112f Text en This journal is © The Royal Society of Chemistry 2018 https://creativecommons.org/licenses/by-nc/3.0/This article is freely available. This article is licensed under a Creative Commons Attribution Non Commercial 3.0 Unported Licence (CC BY-NC 3.0) |
spellingShingle | Chemistry Ortega-Liebana, M. Carmen Hueso, Jose L. Fernandez-Pacheco, Rodrigo Irusta, Silvia Santamaria, Jesus Luminescent mesoporous nanorods as photocatalytic enzyme-like peroxidase surrogates |
title | Luminescent mesoporous nanorods as photocatalytic enzyme-like peroxidase surrogates
|
title_full | Luminescent mesoporous nanorods as photocatalytic enzyme-like peroxidase surrogates
|
title_fullStr | Luminescent mesoporous nanorods as photocatalytic enzyme-like peroxidase surrogates
|
title_full_unstemmed | Luminescent mesoporous nanorods as photocatalytic enzyme-like peroxidase surrogates
|
title_short | Luminescent mesoporous nanorods as photocatalytic enzyme-like peroxidase surrogates
|
title_sort | luminescent mesoporous nanorods as photocatalytic enzyme-like peroxidase surrogates |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6194581/ https://www.ncbi.nlm.nih.gov/pubmed/30429985 http://dx.doi.org/10.1039/c8sc03112f |
work_keys_str_mv | AT ortegaliebanamcarmen luminescentmesoporousnanorodsasphotocatalyticenzymelikeperoxidasesurrogates AT huesojosel luminescentmesoporousnanorodsasphotocatalyticenzymelikeperoxidasesurrogates AT fernandezpachecorodrigo luminescentmesoporousnanorodsasphotocatalyticenzymelikeperoxidasesurrogates AT irustasilvia luminescentmesoporousnanorodsasphotocatalyticenzymelikeperoxidasesurrogates AT santamariajesus luminescentmesoporousnanorodsasphotocatalyticenzymelikeperoxidasesurrogates |