Cargando…
The response of dominant and rare taxa for fungal diversity within different root environments to the cultivation of Bt and conventional cotton varieties
BACKGROUND: Bacillus thuringiensis (Bt) crops have been cultivated at a large scale over the past several decades, which have raised concern about unintended effects on natural environments. Microbial communities typically contain numerous rare taxa that make up the majority of community populations...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6194802/ https://www.ncbi.nlm.nih.gov/pubmed/30336777 http://dx.doi.org/10.1186/s40168-018-0570-9 |
_version_ | 1783364302653095936 |
---|---|
author | Li, Peng Xue, Yong Shi, Jialiang Pan, Aihu Tang, Xueming Ming, Feng |
author_facet | Li, Peng Xue, Yong Shi, Jialiang Pan, Aihu Tang, Xueming Ming, Feng |
author_sort | Li, Peng |
collection | PubMed |
description | BACKGROUND: Bacillus thuringiensis (Bt) crops have been cultivated at a large scale over the past several decades, which have raised concern about unintended effects on natural environments. Microbial communities typically contain numerous rare taxa that make up the majority of community populations. However, the response of dominant and rare taxa for fungal diversity to the different root environments of Bt plants remains unclear. RESULTS: We quantified fungal population sizes and community composition via quantitative PCR of ITS genes and 18S rRNA gene sequencing of, respectively, that were associated with Bt and conventional cotton variety rhizosphere soils from different plant growth stages. qPCR analyses indicated that fungal abundances reached their peak at the seedling stage and that the taproots and lateral root rhizospheres of the Bt cotton SGK321 were significantly different. However, no significant differences in population sizes were detected between the same root zones from Bt and the conventional cotton varieties. The overall patterns of fungal genera abundances followed that of the dominant genera, whereas overall patterns of fungal genera richness followed those of the rare genera. These results suggest that the dominant and rare taxa play different roles in the maintenance of rhizosphere microhabitat ecosystems. Cluster analyses indicated a separation of fungal communities based on the lateral roots or taproots from the three cotton varieties at the seedling stage, suggesting that root microhabitats had marked effects on fungal community composition. Redundancy analyses indicated that pH was more correlated to soil fungal community composition than Bt protein content. CONCLUSIONS: In conclusion, these results indicate that dominant and rare fungal taxa differentially contribute to community dynamics in different root microhabitats of both Bt and conventional cotton varieties. Moreover, these results showed that the rhizosphere fungal community of Bt cotton did not respond significantly to the presence of Bt protein when compared to the two conventional cotton varieties. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s40168-018-0570-9) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-6194802 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-61948022018-10-30 The response of dominant and rare taxa for fungal diversity within different root environments to the cultivation of Bt and conventional cotton varieties Li, Peng Xue, Yong Shi, Jialiang Pan, Aihu Tang, Xueming Ming, Feng Microbiome Research BACKGROUND: Bacillus thuringiensis (Bt) crops have been cultivated at a large scale over the past several decades, which have raised concern about unintended effects on natural environments. Microbial communities typically contain numerous rare taxa that make up the majority of community populations. However, the response of dominant and rare taxa for fungal diversity to the different root environments of Bt plants remains unclear. RESULTS: We quantified fungal population sizes and community composition via quantitative PCR of ITS genes and 18S rRNA gene sequencing of, respectively, that were associated with Bt and conventional cotton variety rhizosphere soils from different plant growth stages. qPCR analyses indicated that fungal abundances reached their peak at the seedling stage and that the taproots and lateral root rhizospheres of the Bt cotton SGK321 were significantly different. However, no significant differences in population sizes were detected between the same root zones from Bt and the conventional cotton varieties. The overall patterns of fungal genera abundances followed that of the dominant genera, whereas overall patterns of fungal genera richness followed those of the rare genera. These results suggest that the dominant and rare taxa play different roles in the maintenance of rhizosphere microhabitat ecosystems. Cluster analyses indicated a separation of fungal communities based on the lateral roots or taproots from the three cotton varieties at the seedling stage, suggesting that root microhabitats had marked effects on fungal community composition. Redundancy analyses indicated that pH was more correlated to soil fungal community composition than Bt protein content. CONCLUSIONS: In conclusion, these results indicate that dominant and rare fungal taxa differentially contribute to community dynamics in different root microhabitats of both Bt and conventional cotton varieties. Moreover, these results showed that the rhizosphere fungal community of Bt cotton did not respond significantly to the presence of Bt protein when compared to the two conventional cotton varieties. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s40168-018-0570-9) contains supplementary material, which is available to authorized users. BioMed Central 2018-10-18 /pmc/articles/PMC6194802/ /pubmed/30336777 http://dx.doi.org/10.1186/s40168-018-0570-9 Text en © The Author(s). 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Li, Peng Xue, Yong Shi, Jialiang Pan, Aihu Tang, Xueming Ming, Feng The response of dominant and rare taxa for fungal diversity within different root environments to the cultivation of Bt and conventional cotton varieties |
title | The response of dominant and rare taxa for fungal diversity within different root environments to the cultivation of Bt and conventional cotton varieties |
title_full | The response of dominant and rare taxa for fungal diversity within different root environments to the cultivation of Bt and conventional cotton varieties |
title_fullStr | The response of dominant and rare taxa for fungal diversity within different root environments to the cultivation of Bt and conventional cotton varieties |
title_full_unstemmed | The response of dominant and rare taxa for fungal diversity within different root environments to the cultivation of Bt and conventional cotton varieties |
title_short | The response of dominant and rare taxa for fungal diversity within different root environments to the cultivation of Bt and conventional cotton varieties |
title_sort | response of dominant and rare taxa for fungal diversity within different root environments to the cultivation of bt and conventional cotton varieties |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6194802/ https://www.ncbi.nlm.nih.gov/pubmed/30336777 http://dx.doi.org/10.1186/s40168-018-0570-9 |
work_keys_str_mv | AT lipeng theresponseofdominantandraretaxaforfungaldiversitywithindifferentrootenvironmentstothecultivationofbtandconventionalcottonvarieties AT xueyong theresponseofdominantandraretaxaforfungaldiversitywithindifferentrootenvironmentstothecultivationofbtandconventionalcottonvarieties AT shijialiang theresponseofdominantandraretaxaforfungaldiversitywithindifferentrootenvironmentstothecultivationofbtandconventionalcottonvarieties AT panaihu theresponseofdominantandraretaxaforfungaldiversitywithindifferentrootenvironmentstothecultivationofbtandconventionalcottonvarieties AT tangxueming theresponseofdominantandraretaxaforfungaldiversitywithindifferentrootenvironmentstothecultivationofbtandconventionalcottonvarieties AT mingfeng theresponseofdominantandraretaxaforfungaldiversitywithindifferentrootenvironmentstothecultivationofbtandconventionalcottonvarieties AT lipeng responseofdominantandraretaxaforfungaldiversitywithindifferentrootenvironmentstothecultivationofbtandconventionalcottonvarieties AT xueyong responseofdominantandraretaxaforfungaldiversitywithindifferentrootenvironmentstothecultivationofbtandconventionalcottonvarieties AT shijialiang responseofdominantandraretaxaforfungaldiversitywithindifferentrootenvironmentstothecultivationofbtandconventionalcottonvarieties AT panaihu responseofdominantandraretaxaforfungaldiversitywithindifferentrootenvironmentstothecultivationofbtandconventionalcottonvarieties AT tangxueming responseofdominantandraretaxaforfungaldiversitywithindifferentrootenvironmentstothecultivationofbtandconventionalcottonvarieties AT mingfeng responseofdominantandraretaxaforfungaldiversitywithindifferentrootenvironmentstothecultivationofbtandconventionalcottonvarieties |