Cargando…

The BackMAP Python module: how a simpler Ramachandran number can simplify the life of a protein simulator

Protein backbones occupy diverse conformations, but compact metrics to describe such conformations and transitions between them have been missing. This report re-introduces the Ramachandran number (ℛ) as a residue-level structural metric that could simply the life of anyone contending with large num...

Descripción completa

Detalles Bibliográficos
Autor principal: Mannige, Ranjan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6195116/
https://www.ncbi.nlm.nih.gov/pubmed/30356937
http://dx.doi.org/10.7717/peerj.5745
Descripción
Sumario:Protein backbones occupy diverse conformations, but compact metrics to describe such conformations and transitions between them have been missing. This report re-introduces the Ramachandran number (ℛ) as a residue-level structural metric that could simply the life of anyone contending with large numbers of protein backbone conformations (e.g., ensembles from NMR and trajectories from simulations). Previously, the Ramachandran number (ℛ) was introduced using a complicated closed form, which made the Ramachandran number difficult to implement. This report discusses a much simpler closed form of ℛ that makes it much easier to calculate, thereby making it easy to implement. Additionally, this report discusses how ℛ dramatically reduces the dimensionality of the protein backbone, thereby making it ideal for simultaneously interrogating large numbers of protein structures. For example, 200 distinct conformations can easily be described in one graphic using ℛ (rather than 200 distinct Ramachandran plots). Finally, a new Python-based backbone analysis tool—BackMAP—is introduced, which reiterates how ℛ can be used as a simple and succinct descriptor of protein backbones and their dynamics.