Cargando…
Learning recurrent dynamics in spiking networks
Spiking activity of neurons engaged in learning and performing a task show complex spatiotemporal dynamics. While the output of recurrent network models can learn to perform various tasks, the possible range of recurrent dynamics that emerge after learning remains unknown. Here we show that modifyin...
Autores principales: | Kim, Christopher M, Chow, Carson C |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6195349/ https://www.ncbi.nlm.nih.gov/pubmed/30234488 http://dx.doi.org/10.7554/eLife.37124 |
Ejemplares similares
-
Biologically plausible learning in recurrent neural networks reproduces neural dynamics observed during cognitive tasks
por: Miconi, Thomas
Publicado: (2017) -
Natural-gradient learning for spiking neurons
por: Kreutzer, Elena, et al.
Publicado: (2022) -
Evolving interpretable plasticity for spiking networks
por: Jordan, Jakob, et al.
Publicado: (2021) -
The geometry of robustness in spiking neural networks
por: Calaim, Nuno, et al.
Publicado: (2022) -
Recurrent neural networks enable design of multifunctional synthetic human gut microbiome dynamics
por: Baranwal, Mayank, et al.
Publicado: (2022)