Cargando…

Transglutaminase is a mesothelioma cancer stem cell survival protein that is required for tumor formation

Mesothelioma is a rare cancer of the mesothelial cell layer of the pleura, peritoneum, pericardium and tunica vaginalis. It is typically caused by asbestos, notoriously resistant to chemotherapy and generally considered incurable with a poor life expectancy. Transglutaminase 2 (TG2), a GTP binding r...

Descripción completa

Detalles Bibliográficos
Autores principales: Adhikary, Gautam, Grun, Daniel, Alexander, H. Richard, Friedberg, Joseph S., Xu, Wen, Keillor, Jeffrey W., Kandasamy, Sivaveera, Eckert, Richard L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6195372/
https://www.ncbi.nlm.nih.gov/pubmed/30349644
http://dx.doi.org/10.18632/oncotarget.26130
Descripción
Sumario:Mesothelioma is a rare cancer of the mesothelial cell layer of the pleura, peritoneum, pericardium and tunica vaginalis. It is typically caused by asbestos, notoriously resistant to chemotherapy and generally considered incurable with a poor life expectancy. Transglutaminase 2 (TG2), a GTP binding regulatory protein, is an important cancer stem cell survival and therapy resistance factor. We show that TG2 is highly expressed in human mesothelioma tumors and in mesothelioma cancer stem cells (MCS cells). TG2 knockdown or TG2 inhibitor treatment reduces MCS cell spheroid formation, matrigel invasion, migration and tumor formation. Time to tumor first appearance is doubled in TG2 knockout cells as compared to wild-type. In addition, TG2 loss is associated with reduced expression of stemness, and epithelial mesenchymal transition markers, and enhanced apoptosis. These studies indicate that TG2 is an important MCS cell survival protein and suggest that TG2 may serve as a mesothelioma cancer stem cell therapy target.