Cargando…
Exact explosive synchronization transitions in Kuramoto oscillators with time-delayed coupling
Synchronization commonly occurs in many natural and man-made systems, from neurons in the brain to cardiac cells to power grids to Josephson junction arrays. Transitions to or out of synchrony for coupled oscillators depend on several factors, such as individual frequencies, coupling, interaction ti...
Autores principales: | Wu, Hui, Kang, Ling, Liu, Zonghua, Dhamala, Mukesh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6195523/ https://www.ncbi.nlm.nih.gov/pubmed/30341395 http://dx.doi.org/10.1038/s41598-018-33845-6 |
Ejemplares similares
-
Exact solution for first-order synchronization transition in a generalized Kuramoto model
por: Hu, Xin, et al.
Publicado: (2014) -
A small change in neuronal network topology can induce explosive synchronization transition and activity propagation in the entire network
por: Wang, Zhenhua, et al.
Publicado: (2017) -
Synchronization Transition of the Second-Order Kuramoto Model on Lattices
por: Ódor, Géza, et al.
Publicado: (2023) -
Explosive transitions to synchronization in networks of phase oscillators
por: Leyva, I., et al.
Publicado: (2013) -
Competitive influence maximization and enhancement of synchronization in populations of non-identical Kuramoto oscillators
por: Brede, Markus, et al.
Publicado: (2018)