Cargando…
Comparative transcriptome analysis two genotypes of Acer truncatum Bunge seeds reveals candidate genes that influences seed VLCFAs accumulation
The Acer truncatum Bunge is a particular widespread forest tree species in northern China. VLCFAs are important to eukaryotes survival and play diverse roles throughout the development. So far, there are reports that the Acer truncatum seeds fatty acid (FA) rich in VLCFAs, but little is known about...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6195533/ https://www.ncbi.nlm.nih.gov/pubmed/30341360 http://dx.doi.org/10.1038/s41598-018-33999-3 |
Sumario: | The Acer truncatum Bunge is a particular widespread forest tree species in northern China. VLCFAs are important to eukaryotes survival and play diverse roles throughout the development. So far, there are reports that the Acer truncatum seeds fatty acid (FA) rich in VLCFAs, but little is known about the physiological mechanism responsible for the biosynthesis. A total of approximately 37.07 Gbp was generated, it was comprehensive enough to determine the majority of the regulation VLCFAs biosynthesis genes. The 97,053 different unigenes were assembled and identified, and large numbers of EST-SSRs were determined. The expression profiles of crucial genes (KCS, KCR, HCD and ECR) involved in VLCFAs elongation of fatty acids were also studied. To our knowledge, the present study provides the first comprehensive of the transcriptome of Acer truncatum seeds. This transcriptome dataset have been made publicly available NCBI, we believe that it may provide new resource for future high-throughput gene expression of Acer truncatum seeds growth and development and will provide theoretical basic information for improving the yield of VLCFAs, especially nervonic acid. |
---|