Cargando…
Mutational interactions define novel cancer subgroups
Large-scale genomic data highlight the complexity and diversity of the molecular changes that drive cancer progression. Statistical analysis of cancer data from different tissues can guide drug repositioning as well as the design of targeted treatments. Here, we develop an improved Bayesian network...
Autores principales: | Kuipers, Jack, Thurnherr, Thomas, Moffa, Giusi, Suter, Polina, Behr, Jonas, Goosen, Ryan, Christofori, Gerhard, Beerenwinkel, Niko |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6195543/ https://www.ncbi.nlm.nih.gov/pubmed/30341300 http://dx.doi.org/10.1038/s41467-018-06867-x |
Ejemplares similares
-
Discovering gene regulatory networks of multiple phenotypic groups using dynamic Bayesian networks
por: Suter, Polina, et al.
Publicado: (2022) -
Single-cell mutation calling and phylogenetic tree reconstruction with loss and recurrence
por: Kuipers, Jack, et al.
Publicado: (2022) -
Joint inference of exclusivity patterns and recurrent trajectories from tumor mutation trees
por: Luo, Xiang Ge, et al.
Publicado: (2023) -
Single-cell mutation identification via phylogenetic inference
por: Singer, Jochen, et al.
Publicado: (2018) -
Inferring signalling dynamics by integrating interventional with observational data
por: Cardner, Mathias, et al.
Publicado: (2019)