Cargando…

Multiparameter optimisation of a magneto-optical trap using deep learning

Machine learning based on artificial neural networks has emerged as an efficient means to develop empirical models of complex systems. Cold atomic ensembles have become commonplace in laboratories around the world, however, many-body interactions give rise to complex dynamics that preclude precise a...

Descripción completa

Detalles Bibliográficos
Autores principales: Tranter, A. D., Slatyer, H. J., Hush, M. R., Leung, A. C., Everett, J. L., Paul, K. V., Vernaz-Gris, P., Lam, P. K., Buchler, B. C., Campbell, G. T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6195564/
https://www.ncbi.nlm.nih.gov/pubmed/30341301
http://dx.doi.org/10.1038/s41467-018-06847-1
_version_ 1783364411293958144
author Tranter, A. D.
Slatyer, H. J.
Hush, M. R.
Leung, A. C.
Everett, J. L.
Paul, K. V.
Vernaz-Gris, P.
Lam, P. K.
Buchler, B. C.
Campbell, G. T.
author_facet Tranter, A. D.
Slatyer, H. J.
Hush, M. R.
Leung, A. C.
Everett, J. L.
Paul, K. V.
Vernaz-Gris, P.
Lam, P. K.
Buchler, B. C.
Campbell, G. T.
author_sort Tranter, A. D.
collection PubMed
description Machine learning based on artificial neural networks has emerged as an efficient means to develop empirical models of complex systems. Cold atomic ensembles have become commonplace in laboratories around the world, however, many-body interactions give rise to complex dynamics that preclude precise analytic optimisation of the cooling and trapping process. Here, we implement a deep artificial neural network to optimise the magneto-optic cooling and trapping of neutral atomic ensembles. The solution identified by machine learning is radically different to the smoothly varying adiabatic solutions currently used. Despite this, the solutions outperform best known solutions producing higher optical densities.
format Online
Article
Text
id pubmed-6195564
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-61955642018-10-22 Multiparameter optimisation of a magneto-optical trap using deep learning Tranter, A. D. Slatyer, H. J. Hush, M. R. Leung, A. C. Everett, J. L. Paul, K. V. Vernaz-Gris, P. Lam, P. K. Buchler, B. C. Campbell, G. T. Nat Commun Article Machine learning based on artificial neural networks has emerged as an efficient means to develop empirical models of complex systems. Cold atomic ensembles have become commonplace in laboratories around the world, however, many-body interactions give rise to complex dynamics that preclude precise analytic optimisation of the cooling and trapping process. Here, we implement a deep artificial neural network to optimise the magneto-optic cooling and trapping of neutral atomic ensembles. The solution identified by machine learning is radically different to the smoothly varying adiabatic solutions currently used. Despite this, the solutions outperform best known solutions producing higher optical densities. Nature Publishing Group UK 2018-10-19 /pmc/articles/PMC6195564/ /pubmed/30341301 http://dx.doi.org/10.1038/s41467-018-06847-1 Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Tranter, A. D.
Slatyer, H. J.
Hush, M. R.
Leung, A. C.
Everett, J. L.
Paul, K. V.
Vernaz-Gris, P.
Lam, P. K.
Buchler, B. C.
Campbell, G. T.
Multiparameter optimisation of a magneto-optical trap using deep learning
title Multiparameter optimisation of a magneto-optical trap using deep learning
title_full Multiparameter optimisation of a magneto-optical trap using deep learning
title_fullStr Multiparameter optimisation of a magneto-optical trap using deep learning
title_full_unstemmed Multiparameter optimisation of a magneto-optical trap using deep learning
title_short Multiparameter optimisation of a magneto-optical trap using deep learning
title_sort multiparameter optimisation of a magneto-optical trap using deep learning
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6195564/
https://www.ncbi.nlm.nih.gov/pubmed/30341301
http://dx.doi.org/10.1038/s41467-018-06847-1
work_keys_str_mv AT tranterad multiparameteroptimisationofamagnetoopticaltrapusingdeeplearning
AT slatyerhj multiparameteroptimisationofamagnetoopticaltrapusingdeeplearning
AT hushmr multiparameteroptimisationofamagnetoopticaltrapusingdeeplearning
AT leungac multiparameteroptimisationofamagnetoopticaltrapusingdeeplearning
AT everettjl multiparameteroptimisationofamagnetoopticaltrapusingdeeplearning
AT paulkv multiparameteroptimisationofamagnetoopticaltrapusingdeeplearning
AT vernazgrisp multiparameteroptimisationofamagnetoopticaltrapusingdeeplearning
AT lampk multiparameteroptimisationofamagnetoopticaltrapusingdeeplearning
AT buchlerbc multiparameteroptimisationofamagnetoopticaltrapusingdeeplearning
AT campbellgt multiparameteroptimisationofamagnetoopticaltrapusingdeeplearning