Cargando…
Multiparameter optimisation of a magneto-optical trap using deep learning
Machine learning based on artificial neural networks has emerged as an efficient means to develop empirical models of complex systems. Cold atomic ensembles have become commonplace in laboratories around the world, however, many-body interactions give rise to complex dynamics that preclude precise a...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6195564/ https://www.ncbi.nlm.nih.gov/pubmed/30341301 http://dx.doi.org/10.1038/s41467-018-06847-1 |
_version_ | 1783364411293958144 |
---|---|
author | Tranter, A. D. Slatyer, H. J. Hush, M. R. Leung, A. C. Everett, J. L. Paul, K. V. Vernaz-Gris, P. Lam, P. K. Buchler, B. C. Campbell, G. T. |
author_facet | Tranter, A. D. Slatyer, H. J. Hush, M. R. Leung, A. C. Everett, J. L. Paul, K. V. Vernaz-Gris, P. Lam, P. K. Buchler, B. C. Campbell, G. T. |
author_sort | Tranter, A. D. |
collection | PubMed |
description | Machine learning based on artificial neural networks has emerged as an efficient means to develop empirical models of complex systems. Cold atomic ensembles have become commonplace in laboratories around the world, however, many-body interactions give rise to complex dynamics that preclude precise analytic optimisation of the cooling and trapping process. Here, we implement a deep artificial neural network to optimise the magneto-optic cooling and trapping of neutral atomic ensembles. The solution identified by machine learning is radically different to the smoothly varying adiabatic solutions currently used. Despite this, the solutions outperform best known solutions producing higher optical densities. |
format | Online Article Text |
id | pubmed-6195564 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-61955642018-10-22 Multiparameter optimisation of a magneto-optical trap using deep learning Tranter, A. D. Slatyer, H. J. Hush, M. R. Leung, A. C. Everett, J. L. Paul, K. V. Vernaz-Gris, P. Lam, P. K. Buchler, B. C. Campbell, G. T. Nat Commun Article Machine learning based on artificial neural networks has emerged as an efficient means to develop empirical models of complex systems. Cold atomic ensembles have become commonplace in laboratories around the world, however, many-body interactions give rise to complex dynamics that preclude precise analytic optimisation of the cooling and trapping process. Here, we implement a deep artificial neural network to optimise the magneto-optic cooling and trapping of neutral atomic ensembles. The solution identified by machine learning is radically different to the smoothly varying adiabatic solutions currently used. Despite this, the solutions outperform best known solutions producing higher optical densities. Nature Publishing Group UK 2018-10-19 /pmc/articles/PMC6195564/ /pubmed/30341301 http://dx.doi.org/10.1038/s41467-018-06847-1 Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Tranter, A. D. Slatyer, H. J. Hush, M. R. Leung, A. C. Everett, J. L. Paul, K. V. Vernaz-Gris, P. Lam, P. K. Buchler, B. C. Campbell, G. T. Multiparameter optimisation of a magneto-optical trap using deep learning |
title | Multiparameter optimisation of a magneto-optical trap using deep learning |
title_full | Multiparameter optimisation of a magneto-optical trap using deep learning |
title_fullStr | Multiparameter optimisation of a magneto-optical trap using deep learning |
title_full_unstemmed | Multiparameter optimisation of a magneto-optical trap using deep learning |
title_short | Multiparameter optimisation of a magneto-optical trap using deep learning |
title_sort | multiparameter optimisation of a magneto-optical trap using deep learning |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6195564/ https://www.ncbi.nlm.nih.gov/pubmed/30341301 http://dx.doi.org/10.1038/s41467-018-06847-1 |
work_keys_str_mv | AT tranterad multiparameteroptimisationofamagnetoopticaltrapusingdeeplearning AT slatyerhj multiparameteroptimisationofamagnetoopticaltrapusingdeeplearning AT hushmr multiparameteroptimisationofamagnetoopticaltrapusingdeeplearning AT leungac multiparameteroptimisationofamagnetoopticaltrapusingdeeplearning AT everettjl multiparameteroptimisationofamagnetoopticaltrapusingdeeplearning AT paulkv multiparameteroptimisationofamagnetoopticaltrapusingdeeplearning AT vernazgrisp multiparameteroptimisationofamagnetoopticaltrapusingdeeplearning AT lampk multiparameteroptimisationofamagnetoopticaltrapusingdeeplearning AT buchlerbc multiparameteroptimisationofamagnetoopticaltrapusingdeeplearning AT campbellgt multiparameteroptimisationofamagnetoopticaltrapusingdeeplearning |