Cargando…

Experimental manipulation of a signal trait reveals complex phenotype-behaviour coordination

Animals use morphological signals such as ornamental traits or weaponry to mediate social interactions, and the extent of signal trait elaboration is often positively associated with reproductive success. By demonstrating relationships between signal traits and fitness, researchers often make infere...

Descripción completa

Detalles Bibliográficos
Autores principales: Levin, Iris I., Fosdick, Bailey K., Tsunekage, Toshi, Aberle, Matthew A., Bergeon Burns, Christine M., Hund, Amanda K., Safran, Rebecca J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6195576/
https://www.ncbi.nlm.nih.gov/pubmed/30341385
http://dx.doi.org/10.1038/s41598-018-33948-0
Descripción
Sumario:Animals use morphological signals such as ornamental traits or weaponry to mediate social interactions, and the extent of signal trait elaboration is often positively associated with reproductive success. By demonstrating relationships between signal traits and fitness, researchers often make inferences about how behaviour operates to shape those outcomes. However, detailed information about fine-scale individual behaviour, and its physiological basis, can be difficult to obtain. Here we show that experimental manipulations to exaggerate a signal trait (plumage colour) and concomitant changes in testosterone and stress-induced corticosterone levels altered social interactivity between manipulated males and their social mates. On average, darkened males did not have higher levels of interactivity than unmanipulated males; however, males who experienced a greater shift in colour (pale to dark), a larger, positive change in testosterone levels, and a dampened stress-induced corticosterone response had a larger increase in the number of interactions with their social mate post-manipulation compared to pre-manipulation. This work provides new insights into the integration and real-time flexibility of multivariate phenotypes and direct evidence for the role of social interactions in pair bond maintenance.