Cargando…

HSP90-incorporating chaperome networks as biosensor for disease-related pathways in patient-specific midbrain dopamine neurons

Environmental and genetic risk factors contribute to Parkinson’s Disease (PD) pathogenesis and the associated midbrain dopamine (mDA) neuron loss. Here, we identify early PD pathogenic events by developing methodology that utilizes recent innovations in human pluripotent stem cells (hPSC) and chemic...

Descripción completa

Detalles Bibliográficos
Autores principales: Kishinevsky, Sarah, Wang, Tai, Rodina, Anna, Chung, Sun Young, Xu, Chao, Philip, John, Taldone, Tony, Joshi, Suhasini, Alpaugh, Mary L., Bolaender, Alexander, Gutbier, Simon, Sandhu, Davinder, Fattahi, Faranak, Zimmer, Bastian, Shah, Smit K., Chang, Elizabeth, Inda, Carmen, Koren, John, Saurat, Nathalie G., Leist, Marcel, Gross, Steven S., Seshan, Venkatraman E., Klein, Christine, Tomishima, Mark J., Erdjument-Bromage, Hediye, Neubert, Thomas A., Henrickson, Ronald C., Chiosis, Gabriela, Studer, Lorenz
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6195591/
https://www.ncbi.nlm.nih.gov/pubmed/30341316
http://dx.doi.org/10.1038/s41467-018-06486-6
_version_ 1783364417507819520
author Kishinevsky, Sarah
Wang, Tai
Rodina, Anna
Chung, Sun Young
Xu, Chao
Philip, John
Taldone, Tony
Joshi, Suhasini
Alpaugh, Mary L.
Bolaender, Alexander
Gutbier, Simon
Sandhu, Davinder
Fattahi, Faranak
Zimmer, Bastian
Shah, Smit K.
Chang, Elizabeth
Inda, Carmen
Koren, John
Saurat, Nathalie G.
Leist, Marcel
Gross, Steven S.
Seshan, Venkatraman E.
Klein, Christine
Tomishima, Mark J.
Erdjument-Bromage, Hediye
Neubert, Thomas A.
Henrickson, Ronald C.
Chiosis, Gabriela
Studer, Lorenz
author_facet Kishinevsky, Sarah
Wang, Tai
Rodina, Anna
Chung, Sun Young
Xu, Chao
Philip, John
Taldone, Tony
Joshi, Suhasini
Alpaugh, Mary L.
Bolaender, Alexander
Gutbier, Simon
Sandhu, Davinder
Fattahi, Faranak
Zimmer, Bastian
Shah, Smit K.
Chang, Elizabeth
Inda, Carmen
Koren, John
Saurat, Nathalie G.
Leist, Marcel
Gross, Steven S.
Seshan, Venkatraman E.
Klein, Christine
Tomishima, Mark J.
Erdjument-Bromage, Hediye
Neubert, Thomas A.
Henrickson, Ronald C.
Chiosis, Gabriela
Studer, Lorenz
author_sort Kishinevsky, Sarah
collection PubMed
description Environmental and genetic risk factors contribute to Parkinson’s Disease (PD) pathogenesis and the associated midbrain dopamine (mDA) neuron loss. Here, we identify early PD pathogenic events by developing methodology that utilizes recent innovations in human pluripotent stem cells (hPSC) and chemical sensors of HSP90-incorporating chaperome networks. We show that events triggered by PD-related genetic or toxic stimuli alter the neuronal proteome, thereby altering the stress-specific chaperome networks, which produce changes detected by chemical sensors. Through this method we identify STAT3 and NF-κB signaling activation as examples of genetic stress, and phospho-tyrosine hydroxylase (TH) activation as an example of toxic stress-induced pathways in PD neurons. Importantly, pharmacological inhibition of the stress chaperome network reversed abnormal phospho-STAT3 signaling and phospho-TH-related dopamine levels and rescued PD neuron viability. The use of chemical sensors of chaperome networks on hPSC-derived lineages may present a general strategy to identify molecular events associated with neurodegenerative diseases.
format Online
Article
Text
id pubmed-6195591
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-61955912018-10-22 HSP90-incorporating chaperome networks as biosensor for disease-related pathways in patient-specific midbrain dopamine neurons Kishinevsky, Sarah Wang, Tai Rodina, Anna Chung, Sun Young Xu, Chao Philip, John Taldone, Tony Joshi, Suhasini Alpaugh, Mary L. Bolaender, Alexander Gutbier, Simon Sandhu, Davinder Fattahi, Faranak Zimmer, Bastian Shah, Smit K. Chang, Elizabeth Inda, Carmen Koren, John Saurat, Nathalie G. Leist, Marcel Gross, Steven S. Seshan, Venkatraman E. Klein, Christine Tomishima, Mark J. Erdjument-Bromage, Hediye Neubert, Thomas A. Henrickson, Ronald C. Chiosis, Gabriela Studer, Lorenz Nat Commun Article Environmental and genetic risk factors contribute to Parkinson’s Disease (PD) pathogenesis and the associated midbrain dopamine (mDA) neuron loss. Here, we identify early PD pathogenic events by developing methodology that utilizes recent innovations in human pluripotent stem cells (hPSC) and chemical sensors of HSP90-incorporating chaperome networks. We show that events triggered by PD-related genetic or toxic stimuli alter the neuronal proteome, thereby altering the stress-specific chaperome networks, which produce changes detected by chemical sensors. Through this method we identify STAT3 and NF-κB signaling activation as examples of genetic stress, and phospho-tyrosine hydroxylase (TH) activation as an example of toxic stress-induced pathways in PD neurons. Importantly, pharmacological inhibition of the stress chaperome network reversed abnormal phospho-STAT3 signaling and phospho-TH-related dopamine levels and rescued PD neuron viability. The use of chemical sensors of chaperome networks on hPSC-derived lineages may present a general strategy to identify molecular events associated with neurodegenerative diseases. Nature Publishing Group UK 2018-10-19 /pmc/articles/PMC6195591/ /pubmed/30341316 http://dx.doi.org/10.1038/s41467-018-06486-6 Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Kishinevsky, Sarah
Wang, Tai
Rodina, Anna
Chung, Sun Young
Xu, Chao
Philip, John
Taldone, Tony
Joshi, Suhasini
Alpaugh, Mary L.
Bolaender, Alexander
Gutbier, Simon
Sandhu, Davinder
Fattahi, Faranak
Zimmer, Bastian
Shah, Smit K.
Chang, Elizabeth
Inda, Carmen
Koren, John
Saurat, Nathalie G.
Leist, Marcel
Gross, Steven S.
Seshan, Venkatraman E.
Klein, Christine
Tomishima, Mark J.
Erdjument-Bromage, Hediye
Neubert, Thomas A.
Henrickson, Ronald C.
Chiosis, Gabriela
Studer, Lorenz
HSP90-incorporating chaperome networks as biosensor for disease-related pathways in patient-specific midbrain dopamine neurons
title HSP90-incorporating chaperome networks as biosensor for disease-related pathways in patient-specific midbrain dopamine neurons
title_full HSP90-incorporating chaperome networks as biosensor for disease-related pathways in patient-specific midbrain dopamine neurons
title_fullStr HSP90-incorporating chaperome networks as biosensor for disease-related pathways in patient-specific midbrain dopamine neurons
title_full_unstemmed HSP90-incorporating chaperome networks as biosensor for disease-related pathways in patient-specific midbrain dopamine neurons
title_short HSP90-incorporating chaperome networks as biosensor for disease-related pathways in patient-specific midbrain dopamine neurons
title_sort hsp90-incorporating chaperome networks as biosensor for disease-related pathways in patient-specific midbrain dopamine neurons
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6195591/
https://www.ncbi.nlm.nih.gov/pubmed/30341316
http://dx.doi.org/10.1038/s41467-018-06486-6
work_keys_str_mv AT kishinevskysarah hsp90incorporatingchaperomenetworksasbiosensorfordiseaserelatedpathwaysinpatientspecificmidbraindopamineneurons
AT wangtai hsp90incorporatingchaperomenetworksasbiosensorfordiseaserelatedpathwaysinpatientspecificmidbraindopamineneurons
AT rodinaanna hsp90incorporatingchaperomenetworksasbiosensorfordiseaserelatedpathwaysinpatientspecificmidbraindopamineneurons
AT chungsunyoung hsp90incorporatingchaperomenetworksasbiosensorfordiseaserelatedpathwaysinpatientspecificmidbraindopamineneurons
AT xuchao hsp90incorporatingchaperomenetworksasbiosensorfordiseaserelatedpathwaysinpatientspecificmidbraindopamineneurons
AT philipjohn hsp90incorporatingchaperomenetworksasbiosensorfordiseaserelatedpathwaysinpatientspecificmidbraindopamineneurons
AT taldonetony hsp90incorporatingchaperomenetworksasbiosensorfordiseaserelatedpathwaysinpatientspecificmidbraindopamineneurons
AT joshisuhasini hsp90incorporatingchaperomenetworksasbiosensorfordiseaserelatedpathwaysinpatientspecificmidbraindopamineneurons
AT alpaughmaryl hsp90incorporatingchaperomenetworksasbiosensorfordiseaserelatedpathwaysinpatientspecificmidbraindopamineneurons
AT bolaenderalexander hsp90incorporatingchaperomenetworksasbiosensorfordiseaserelatedpathwaysinpatientspecificmidbraindopamineneurons
AT gutbiersimon hsp90incorporatingchaperomenetworksasbiosensorfordiseaserelatedpathwaysinpatientspecificmidbraindopamineneurons
AT sandhudavinder hsp90incorporatingchaperomenetworksasbiosensorfordiseaserelatedpathwaysinpatientspecificmidbraindopamineneurons
AT fattahifaranak hsp90incorporatingchaperomenetworksasbiosensorfordiseaserelatedpathwaysinpatientspecificmidbraindopamineneurons
AT zimmerbastian hsp90incorporatingchaperomenetworksasbiosensorfordiseaserelatedpathwaysinpatientspecificmidbraindopamineneurons
AT shahsmitk hsp90incorporatingchaperomenetworksasbiosensorfordiseaserelatedpathwaysinpatientspecificmidbraindopamineneurons
AT changelizabeth hsp90incorporatingchaperomenetworksasbiosensorfordiseaserelatedpathwaysinpatientspecificmidbraindopamineneurons
AT indacarmen hsp90incorporatingchaperomenetworksasbiosensorfordiseaserelatedpathwaysinpatientspecificmidbraindopamineneurons
AT korenjohn hsp90incorporatingchaperomenetworksasbiosensorfordiseaserelatedpathwaysinpatientspecificmidbraindopamineneurons
AT sauratnathalieg hsp90incorporatingchaperomenetworksasbiosensorfordiseaserelatedpathwaysinpatientspecificmidbraindopamineneurons
AT leistmarcel hsp90incorporatingchaperomenetworksasbiosensorfordiseaserelatedpathwaysinpatientspecificmidbraindopamineneurons
AT grossstevens hsp90incorporatingchaperomenetworksasbiosensorfordiseaserelatedpathwaysinpatientspecificmidbraindopamineneurons
AT seshanvenkatramane hsp90incorporatingchaperomenetworksasbiosensorfordiseaserelatedpathwaysinpatientspecificmidbraindopamineneurons
AT kleinchristine hsp90incorporatingchaperomenetworksasbiosensorfordiseaserelatedpathwaysinpatientspecificmidbraindopamineneurons
AT tomishimamarkj hsp90incorporatingchaperomenetworksasbiosensorfordiseaserelatedpathwaysinpatientspecificmidbraindopamineneurons
AT erdjumentbromagehediye hsp90incorporatingchaperomenetworksasbiosensorfordiseaserelatedpathwaysinpatientspecificmidbraindopamineneurons
AT neubertthomasa hsp90incorporatingchaperomenetworksasbiosensorfordiseaserelatedpathwaysinpatientspecificmidbraindopamineneurons
AT henricksonronaldc hsp90incorporatingchaperomenetworksasbiosensorfordiseaserelatedpathwaysinpatientspecificmidbraindopamineneurons
AT chiosisgabriela hsp90incorporatingchaperomenetworksasbiosensorfordiseaserelatedpathwaysinpatientspecificmidbraindopamineneurons
AT studerlorenz hsp90incorporatingchaperomenetworksasbiosensorfordiseaserelatedpathwaysinpatientspecificmidbraindopamineneurons