Cargando…
Complex assembly from planar and twisted π-conjugated molecules towards alloy helices and core-shell structures
Integrating together two dissimilar π-conjugated molecules into controlled complex topological configurations remains a largely unsolved problem owing to the diversity of organic species and their respective different assembly features. Here, we find that two structurally similar organic semiconduct...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6195596/ https://www.ncbi.nlm.nih.gov/pubmed/30341293 http://dx.doi.org/10.1038/s41467-018-06489-3 |
Sumario: | Integrating together two dissimilar π-conjugated molecules into controlled complex topological configurations remains a largely unsolved problem owing to the diversity of organic species and their respective different assembly features. Here, we find that two structurally similar organic semiconductors, 9,10-bis(phenylethynyl)anthracene (BA) and 5,12-bis(phenylethynyl)naphthacene (BN), co-assemble into two-component helices by control of the growth kinetics as well as the molar ratio of BA/BN. The helical superstructures made of planar and twisted bis(phenylethynyl) derivatives can be regarded as (BA)(x)(BN)(1−x) alloys, which are formed due to compatible structural relationship between BA and BN. Moreover, epitaxial growth of (BA)(x)(BN)(1−x) alloy layer on the surface of BA tube to form BA@(BA)(x)(BN)(1−x) core-shell structure is also achieved via a solute exchange process. The precise control over composition and morphology towards organic alloy helices and core-shell microstructures opens a door for understanding the complex co-assembly features of two or more different material partners with similar structures. |
---|