Cargando…
Bloody Zebrafish: Novel Methods in Normal and Malignant Hematopoiesis
Hematopoiesis is an optimal system for studying stem cell maintenance and lineage differentiation under physiological and pathological conditions. In vertebrate organisms, billions of differentiated hematopoietic cells need to be continuously produced to replenish the blood cell pool. Disruptions in...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6196227/ https://www.ncbi.nlm.nih.gov/pubmed/30374440 http://dx.doi.org/10.3389/fcell.2018.00124 |
_version_ | 1783364512289652736 |
---|---|
author | de Pater, Emma Trompouki, Eirini |
author_facet | de Pater, Emma Trompouki, Eirini |
author_sort | de Pater, Emma |
collection | PubMed |
description | Hematopoiesis is an optimal system for studying stem cell maintenance and lineage differentiation under physiological and pathological conditions. In vertebrate organisms, billions of differentiated hematopoietic cells need to be continuously produced to replenish the blood cell pool. Disruptions in this process have immediate consequences for oxygen transport, responses against pathogens, maintenance of hemostasis and vascular integrity. Zebrafish is a widely used and well-established model for studying the hematopoietic system. Several new hematopoietic regulators were identified in genetic and chemical screens using the zebrafish model. Moreover, zebrafish enables in vivo imaging of hematopoietic stem cell generation and differentiation during embryogenesis, and adulthood. Finally, zebrafish has been used to model hematopoietic diseases. Recent technological advances in single-cell transcriptome analysis, epigenetic regulation, proteomics, metabolomics, and processing of large data sets promise to transform the current understanding of normal, abnormal, and malignant hematopoiesis. In this perspective, we discuss how the zebrafish model has proven beneficial for studying physiological and pathological hematopoiesis and how these novel technologies are transforming the field. |
format | Online Article Text |
id | pubmed-6196227 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-61962272018-10-29 Bloody Zebrafish: Novel Methods in Normal and Malignant Hematopoiesis de Pater, Emma Trompouki, Eirini Front Cell Dev Biol Physiology Hematopoiesis is an optimal system for studying stem cell maintenance and lineage differentiation under physiological and pathological conditions. In vertebrate organisms, billions of differentiated hematopoietic cells need to be continuously produced to replenish the blood cell pool. Disruptions in this process have immediate consequences for oxygen transport, responses against pathogens, maintenance of hemostasis and vascular integrity. Zebrafish is a widely used and well-established model for studying the hematopoietic system. Several new hematopoietic regulators were identified in genetic and chemical screens using the zebrafish model. Moreover, zebrafish enables in vivo imaging of hematopoietic stem cell generation and differentiation during embryogenesis, and adulthood. Finally, zebrafish has been used to model hematopoietic diseases. Recent technological advances in single-cell transcriptome analysis, epigenetic regulation, proteomics, metabolomics, and processing of large data sets promise to transform the current understanding of normal, abnormal, and malignant hematopoiesis. In this perspective, we discuss how the zebrafish model has proven beneficial for studying physiological and pathological hematopoiesis and how these novel technologies are transforming the field. Frontiers Media S.A. 2018-10-15 /pmc/articles/PMC6196227/ /pubmed/30374440 http://dx.doi.org/10.3389/fcell.2018.00124 Text en Copyright © 2018 de Pater and Trompouki. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Physiology de Pater, Emma Trompouki, Eirini Bloody Zebrafish: Novel Methods in Normal and Malignant Hematopoiesis |
title | Bloody Zebrafish: Novel Methods in Normal and Malignant Hematopoiesis |
title_full | Bloody Zebrafish: Novel Methods in Normal and Malignant Hematopoiesis |
title_fullStr | Bloody Zebrafish: Novel Methods in Normal and Malignant Hematopoiesis |
title_full_unstemmed | Bloody Zebrafish: Novel Methods in Normal and Malignant Hematopoiesis |
title_short | Bloody Zebrafish: Novel Methods in Normal and Malignant Hematopoiesis |
title_sort | bloody zebrafish: novel methods in normal and malignant hematopoiesis |
topic | Physiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6196227/ https://www.ncbi.nlm.nih.gov/pubmed/30374440 http://dx.doi.org/10.3389/fcell.2018.00124 |
work_keys_str_mv | AT depateremma bloodyzebrafishnovelmethodsinnormalandmalignanthematopoiesis AT trompoukieirini bloodyzebrafishnovelmethodsinnormalandmalignanthematopoiesis |