Cargando…
On Practical Issues for Stochastic STDP Hardware With 1-bit Synaptic Weights
In computational neuroscience, synaptic plasticity learning rules are typically studied using the full 64-bit floating point precision computers provide. However, for dedicated hardware implementations, the precision used not only penalizes directly the required memory resources, but also the comput...
Autores principales: | Yousefzadeh, Amirreza, Stromatias, Evangelos, Soto, Miguel, Serrano-Gotarredona, Teresa, Linares-Barranco, Bernabé |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6196279/ https://www.ncbi.nlm.nih.gov/pubmed/30374283 http://dx.doi.org/10.3389/fnins.2018.00665 |
Ejemplares similares
-
An Event-Driven Classifier for Spiking Neural Networks Fed with Synthetic or Dynamic Vision Sensor Data
por: Stromatias, Evangelos, et al.
Publicado: (2017) -
STDP and STDP variations with memristors for spiking neuromorphic learning systems
por: Serrano-Gotarredona, T., et al.
Publicado: (2013) -
Neuromorphic Spiking Neural Networks and Their Memristor-CMOS Hardware Implementations
por: Camuñas-Mesa, Luis A., et al.
Publicado: (2019) -
Hardware Implementation of Differential Oscillatory Neural Networks Using VO( 2)-Based Oscillators and Memristor-Bridge Circuits
por: Shamsi, Jafar, et al.
Publicado: (2021) -
Poker-DVS and MNIST-DVS. Their History, How They Were Made, and Other Details
por: Serrano-Gotarredona, Teresa, et al.
Publicado: (2015)