Cargando…
A methodological approach for deep learning to distinguish between meningiomas and gliomas on canine MR-images
BACKGROUND: Distinguishing between meningeal-based and intra-axial lesions by means of magnetic resonance (MR) imaging findings may occasionally be challenging. Meningiomas and gliomas account for most of the total primary brain neoplasms in dogs, and differentiating between these two forms is manda...
Autores principales: | Banzato, Tommaso, Bernardini, Marco, Cherubini, Giunio B., Zotti, Alessandro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6196418/ https://www.ncbi.nlm.nih.gov/pubmed/30348148 http://dx.doi.org/10.1186/s12917-018-1638-2 |
Ejemplares similares
-
Accuracy of deep learning to differentiate the histopathological grading of meningiomas on MR images: A preliminary study
por: Banzato, Tommaso, et al.
Publicado: (2019) -
Automatic classification of canine thoracic radiographs using deep learning
por: Banzato, Tommaso, et al.
Publicado: (2021) -
An AI-based algorithm for the automatic evaluation of image quality in canine thoracic radiographs
por: Banzato, Tommaso, et al.
Publicado: (2023) -
Low Field MRI Measurements of the Normal Canine Trigeminal Nerve
por: Swain, Charlotte E., et al.
Publicado: (2020) -
Incidence and type of brain herniation associated with intracranial
meningioma in dogs and cats
por: MINATO, Simone, et al.
Publicado: (2020)