Cargando…
Neural-inspired sensors enable sparse, efficient classification of spatiotemporal data
Sparse sensor placement is a central challenge in the efficient characterization of complex systems when the cost of acquiring and processing data is high. Leading sparse sensing methods typically exploit either spatial or temporal correlations, but rarely both. This work introduces a sparse sensor...
Autores principales: | Mohren, Thomas L., Daniel, Thomas L., Brunton, Steven L., Brunton, Bingni W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6196534/ https://www.ncbi.nlm.nih.gov/pubmed/30213850 http://dx.doi.org/10.1073/pnas.1808909115 |
Ejemplares similares
-
Go with the FLOW: visualizing spatiotemporal dynamics in optical widefield calcium imaging
por: Linden, Nathaniel J., et al.
Publicado: (2021) -
Wing structure and neural encoding jointly determine sensing strategies in insect flight
por: Weber, Alison I., et al.
Publicado: (2021) -
Learning dominant physical processes with data-driven balance models
por: Callaham, Jared L., et al.
Publicado: (2021) -
Sparse nonlinear models of chaotic electroconvection
por: Guan, Yifei, et al.
Publicado: (2021) -
Koopman Invariant Subspaces and Finite Linear Representations of Nonlinear Dynamical Systems for Control
por: Brunton, Steven L., et al.
Publicado: (2016)