Cargando…
Automated Assessment of Movement Impairment in Huntington’s Disease
Quantitative assessment of movement impairment in Huntington’s disease (HD) is essential to monitoring of disease progression. This paper aimed to develop and validate a novel low cost, objective automated system for the evaluation of upper limb movement impairment in HD in order to eliminate the in...
Formato: | Online Artículo Texto |
---|---|
Lenguaje: | English |
Publicado: |
IEEE
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6196596/ https://www.ncbi.nlm.nih.gov/pubmed/30334742 http://dx.doi.org/10.1109/TNSRE.2018.2868170 |
Sumario: | Quantitative assessment of movement impairment in Huntington’s disease (HD) is essential to monitoring of disease progression. This paper aimed to develop and validate a novel low cost, objective automated system for the evaluation of upper limb movement impairment in HD in order to eliminate the inconsistency of the assessor and offer a more sensitive, continuous assessment scale. Patients with genetically confirmed HD and healthy controls were recruited to this observational study. Demographic data, including age (years), gender, and unified HD rating scale total motor score (UHDRS-TMS), were recorded. For the purposes of this paper, a modified upper limb motor impairment score (mULMS) was generated from the UHDRS-TMS. All participants completed a brief, standardized clinical assessment of upper limb dexterity while wearing a tri-axial accelerometer on each wrist and on the sternum. The captured acceleration data were used to develop an automatic classification system for discriminating between healthy and HD participants and to automatically generate a continuous movement impairment score (MIS) that reflected the degree of the movement impairment. Data from 48 healthy and 44 HD participants was used to validate the developed system, which achieved 98.78% accuracy in discriminating between healthy and HD participants. The Pearson correlation coefficient between the automatic MIS and the clinician rated mULMS was 0.77 with a p-value < 0.01. The approach presented in this paper demonstrates the possibility of an automated objective, consistent, and sensitive assessment of the HD movement impairment. |
---|