Cargando…

Effect of Pufa Substrates on Fatty Acid Profile of Bifidobacterium breve Ncimb 702258 and CLA/CLNA Production in Commercial Semi-Skimmed Milk

Current research on lipids is highlighting their relevant role in metabolic/signaling pathways. Conjugated fatty acids (CFA), namely isomers of linoleic and linolenic acid (i.e. CLA and CLNA, respectively) can positively modulate inflammation processes and energy metabolism, promoting anti-carcinoge...

Descripción completa

Detalles Bibliográficos
Autores principales: Fontes, Ana Luiza, Pimentel, Lígia, Rodríguez-Alcalá, Luis Miguel, Gomes, Ana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6197199/
https://www.ncbi.nlm.nih.gov/pubmed/30349012
http://dx.doi.org/10.1038/s41598-018-33970-2
_version_ 1783364712131461120
author Fontes, Ana Luiza
Pimentel, Lígia
Rodríguez-Alcalá, Luis Miguel
Gomes, Ana
author_facet Fontes, Ana Luiza
Pimentel, Lígia
Rodríguez-Alcalá, Luis Miguel
Gomes, Ana
author_sort Fontes, Ana Luiza
collection PubMed
description Current research on lipids is highlighting their relevant role in metabolic/signaling pathways. Conjugated fatty acids (CFA), namely isomers of linoleic and linolenic acid (i.e. CLA and CLNA, respectively) can positively modulate inflammation processes and energy metabolism, promoting anti-carcinogenic and antioxidant effects, improved lipid profiles and insulin resistance, among others. Bioactive doses have been indicated to be above 1 g/d, yet these cannot be achieved through a moderate intake (i.e. 1–2 servings) of natural sources, and certain CLA-containing products have limited commercial availability. Such handicaps have fueled research interest in finding alternative fortification strategies. In recent years, screening of dairy products for CFA-producing bacteria has attracted much attention and has led to the identification of some promising strains, including Bifidobacterium breve NCIMB 702258. This strain has shown interesting producing capabilities in model systems as well as positive modulation of lipid metabolism activities in animal studies. Accordingly, the aim of this research work was to assay B. breve NCIMB 702258 in semi-skimmed milk to produce a probiotic fermented dairy product enriched in bioactive CLA and CLNA. The effect of substrates (LA, α-LNA and γ-LNA) on growth performance and membrane fatty acids profile was also studied, as these potential modifications have been associated to stress response. When tested in cys-MRS culture medium, LA, α-LNA and γ-LNA impaired the fatty acid synthesis by B. breve since membrane concentrations for stearic and oleic acids decreased. Variations in the C18:1 c11 and lactobacillic acid concentrations, may suggest that these substrates are also affecting the membrane fluidity. Bifidobacterium breve CFA production capacity was first assessed in cys-MRS with LA, α-LNA, γ-LNA or all substrates together at 0.5 mg/mL each. This strain did not produce CFA from γ-LNA, but converted 31.12% of LA and 68.20% of α-LNA into CLA and CLNA, respectively, after incubation for 24 h at 37 °C. In a second phase, B. breve was inoculated in a commercial semi-skimmed milk with LA, α-LNA or both at 0.5 mg/mL each. Bifidobacterium breve revealed a limited capacity to synthesize CLA isomers, but was able to produce 0.062–0.115 mg/mL CLNA after 24 h at 37 °C. However, organoleptic problems were reported which need to be addressed in future studies. These results show that although CFA were produced at too low concentrations to be able to achieve solely the bioactive dose in one daily portion size, fermented dairy products are a suitable vector to deliver B. breve NCIMB 702258.
format Online
Article
Text
id pubmed-6197199
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-61971992018-10-24 Effect of Pufa Substrates on Fatty Acid Profile of Bifidobacterium breve Ncimb 702258 and CLA/CLNA Production in Commercial Semi-Skimmed Milk Fontes, Ana Luiza Pimentel, Lígia Rodríguez-Alcalá, Luis Miguel Gomes, Ana Sci Rep Article Current research on lipids is highlighting their relevant role in metabolic/signaling pathways. Conjugated fatty acids (CFA), namely isomers of linoleic and linolenic acid (i.e. CLA and CLNA, respectively) can positively modulate inflammation processes and energy metabolism, promoting anti-carcinogenic and antioxidant effects, improved lipid profiles and insulin resistance, among others. Bioactive doses have been indicated to be above 1 g/d, yet these cannot be achieved through a moderate intake (i.e. 1–2 servings) of natural sources, and certain CLA-containing products have limited commercial availability. Such handicaps have fueled research interest in finding alternative fortification strategies. In recent years, screening of dairy products for CFA-producing bacteria has attracted much attention and has led to the identification of some promising strains, including Bifidobacterium breve NCIMB 702258. This strain has shown interesting producing capabilities in model systems as well as positive modulation of lipid metabolism activities in animal studies. Accordingly, the aim of this research work was to assay B. breve NCIMB 702258 in semi-skimmed milk to produce a probiotic fermented dairy product enriched in bioactive CLA and CLNA. The effect of substrates (LA, α-LNA and γ-LNA) on growth performance and membrane fatty acids profile was also studied, as these potential modifications have been associated to stress response. When tested in cys-MRS culture medium, LA, α-LNA and γ-LNA impaired the fatty acid synthesis by B. breve since membrane concentrations for stearic and oleic acids decreased. Variations in the C18:1 c11 and lactobacillic acid concentrations, may suggest that these substrates are also affecting the membrane fluidity. Bifidobacterium breve CFA production capacity was first assessed in cys-MRS with LA, α-LNA, γ-LNA or all substrates together at 0.5 mg/mL each. This strain did not produce CFA from γ-LNA, but converted 31.12% of LA and 68.20% of α-LNA into CLA and CLNA, respectively, after incubation for 24 h at 37 °C. In a second phase, B. breve was inoculated in a commercial semi-skimmed milk with LA, α-LNA or both at 0.5 mg/mL each. Bifidobacterium breve revealed a limited capacity to synthesize CLA isomers, but was able to produce 0.062–0.115 mg/mL CLNA after 24 h at 37 °C. However, organoleptic problems were reported which need to be addressed in future studies. These results show that although CFA were produced at too low concentrations to be able to achieve solely the bioactive dose in one daily portion size, fermented dairy products are a suitable vector to deliver B. breve NCIMB 702258. Nature Publishing Group UK 2018-10-22 /pmc/articles/PMC6197199/ /pubmed/30349012 http://dx.doi.org/10.1038/s41598-018-33970-2 Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Fontes, Ana Luiza
Pimentel, Lígia
Rodríguez-Alcalá, Luis Miguel
Gomes, Ana
Effect of Pufa Substrates on Fatty Acid Profile of Bifidobacterium breve Ncimb 702258 and CLA/CLNA Production in Commercial Semi-Skimmed Milk
title Effect of Pufa Substrates on Fatty Acid Profile of Bifidobacterium breve Ncimb 702258 and CLA/CLNA Production in Commercial Semi-Skimmed Milk
title_full Effect of Pufa Substrates on Fatty Acid Profile of Bifidobacterium breve Ncimb 702258 and CLA/CLNA Production in Commercial Semi-Skimmed Milk
title_fullStr Effect of Pufa Substrates on Fatty Acid Profile of Bifidobacterium breve Ncimb 702258 and CLA/CLNA Production in Commercial Semi-Skimmed Milk
title_full_unstemmed Effect of Pufa Substrates on Fatty Acid Profile of Bifidobacterium breve Ncimb 702258 and CLA/CLNA Production in Commercial Semi-Skimmed Milk
title_short Effect of Pufa Substrates on Fatty Acid Profile of Bifidobacterium breve Ncimb 702258 and CLA/CLNA Production in Commercial Semi-Skimmed Milk
title_sort effect of pufa substrates on fatty acid profile of bifidobacterium breve ncimb 702258 and cla/clna production in commercial semi-skimmed milk
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6197199/
https://www.ncbi.nlm.nih.gov/pubmed/30349012
http://dx.doi.org/10.1038/s41598-018-33970-2
work_keys_str_mv AT fontesanaluiza effectofpufasubstratesonfattyacidprofileofbifidobacteriumbrevencimb702258andclaclnaproductionincommercialsemiskimmedmilk
AT pimentelligia effectofpufasubstratesonfattyacidprofileofbifidobacteriumbrevencimb702258andclaclnaproductionincommercialsemiskimmedmilk
AT rodriguezalcalaluismiguel effectofpufasubstratesonfattyacidprofileofbifidobacteriumbrevencimb702258andclaclnaproductionincommercialsemiskimmedmilk
AT gomesana effectofpufasubstratesonfattyacidprofileofbifidobacteriumbrevencimb702258andclaclnaproductionincommercialsemiskimmedmilk