Cargando…
Reconfigurable infrared hyperbolic metasurfaces using phase change materials
Metasurfaces control light propagation at the nanoscale for applications in both free-space and surface-confined geometries. However, dynamically changing the properties of metasurfaces can be a major challenge. Here we demonstrate a reconfigurable hyperbolic metasurface comprised of a heterostructu...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6197242/ https://www.ncbi.nlm.nih.gov/pubmed/30349033 http://dx.doi.org/10.1038/s41467-018-06858-y |
_version_ | 1783364722490343424 |
---|---|
author | Folland, T. G. Fali, A. White, S. T. Matson, J. R. Liu, S. Aghamiri, N. A. Edgar, J. H. Haglund, R. F. Abate, Y. Caldwell, J. D. |
author_facet | Folland, T. G. Fali, A. White, S. T. Matson, J. R. Liu, S. Aghamiri, N. A. Edgar, J. H. Haglund, R. F. Abate, Y. Caldwell, J. D. |
author_sort | Folland, T. G. |
collection | PubMed |
description | Metasurfaces control light propagation at the nanoscale for applications in both free-space and surface-confined geometries. However, dynamically changing the properties of metasurfaces can be a major challenge. Here we demonstrate a reconfigurable hyperbolic metasurface comprised of a heterostructure of isotopically enriched hexagonal boron nitride (hBN) in direct contact with the phase-change material (PCM) single-crystal vanadium dioxide (VO(2)). Metallic and dielectric domains in VO(2) provide spatially localized changes in the local dielectric environment, enabling launching, reflection, and transmission of hyperbolic phonon polaritons (HPhPs) at the PCM domain boundaries, and tuning the wavelength of HPhPs propagating in hBN over these domains by a factor of 1.6. We show that this system supports in-plane HPhP refraction, thus providing a prototype for a class of planar refractive optics. This approach offers reconfigurable control of in-plane HPhP propagation and exemplifies a generalizable framework based on combining hyperbolic media and PCMs to design optical functionality. |
format | Online Article Text |
id | pubmed-6197242 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-61972422018-10-23 Reconfigurable infrared hyperbolic metasurfaces using phase change materials Folland, T. G. Fali, A. White, S. T. Matson, J. R. Liu, S. Aghamiri, N. A. Edgar, J. H. Haglund, R. F. Abate, Y. Caldwell, J. D. Nat Commun Article Metasurfaces control light propagation at the nanoscale for applications in both free-space and surface-confined geometries. However, dynamically changing the properties of metasurfaces can be a major challenge. Here we demonstrate a reconfigurable hyperbolic metasurface comprised of a heterostructure of isotopically enriched hexagonal boron nitride (hBN) in direct contact with the phase-change material (PCM) single-crystal vanadium dioxide (VO(2)). Metallic and dielectric domains in VO(2) provide spatially localized changes in the local dielectric environment, enabling launching, reflection, and transmission of hyperbolic phonon polaritons (HPhPs) at the PCM domain boundaries, and tuning the wavelength of HPhPs propagating in hBN over these domains by a factor of 1.6. We show that this system supports in-plane HPhP refraction, thus providing a prototype for a class of planar refractive optics. This approach offers reconfigurable control of in-plane HPhP propagation and exemplifies a generalizable framework based on combining hyperbolic media and PCMs to design optical functionality. Nature Publishing Group UK 2018-10-22 /pmc/articles/PMC6197242/ /pubmed/30349033 http://dx.doi.org/10.1038/s41467-018-06858-y Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Folland, T. G. Fali, A. White, S. T. Matson, J. R. Liu, S. Aghamiri, N. A. Edgar, J. H. Haglund, R. F. Abate, Y. Caldwell, J. D. Reconfigurable infrared hyperbolic metasurfaces using phase change materials |
title | Reconfigurable infrared hyperbolic metasurfaces using phase change materials |
title_full | Reconfigurable infrared hyperbolic metasurfaces using phase change materials |
title_fullStr | Reconfigurable infrared hyperbolic metasurfaces using phase change materials |
title_full_unstemmed | Reconfigurable infrared hyperbolic metasurfaces using phase change materials |
title_short | Reconfigurable infrared hyperbolic metasurfaces using phase change materials |
title_sort | reconfigurable infrared hyperbolic metasurfaces using phase change materials |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6197242/ https://www.ncbi.nlm.nih.gov/pubmed/30349033 http://dx.doi.org/10.1038/s41467-018-06858-y |
work_keys_str_mv | AT follandtg reconfigurableinfraredhyperbolicmetasurfacesusingphasechangematerials AT falia reconfigurableinfraredhyperbolicmetasurfacesusingphasechangematerials AT whitest reconfigurableinfraredhyperbolicmetasurfacesusingphasechangematerials AT matsonjr reconfigurableinfraredhyperbolicmetasurfacesusingphasechangematerials AT lius reconfigurableinfraredhyperbolicmetasurfacesusingphasechangematerials AT aghamirina reconfigurableinfraredhyperbolicmetasurfacesusingphasechangematerials AT edgarjh reconfigurableinfraredhyperbolicmetasurfacesusingphasechangematerials AT haglundrf reconfigurableinfraredhyperbolicmetasurfacesusingphasechangematerials AT abatey reconfigurableinfraredhyperbolicmetasurfacesusingphasechangematerials AT caldwelljd reconfigurableinfraredhyperbolicmetasurfacesusingphasechangematerials |