Cargando…

Reconfigurable infrared hyperbolic metasurfaces using phase change materials

Metasurfaces control light propagation at the nanoscale for applications in both free-space and surface-confined geometries. However, dynamically changing the properties of metasurfaces can be a major challenge. Here we demonstrate a reconfigurable hyperbolic metasurface comprised of a heterostructu...

Descripción completa

Detalles Bibliográficos
Autores principales: Folland, T. G., Fali, A., White, S. T., Matson, J. R., Liu, S., Aghamiri, N. A., Edgar, J. H., Haglund, R. F., Abate, Y., Caldwell, J. D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6197242/
https://www.ncbi.nlm.nih.gov/pubmed/30349033
http://dx.doi.org/10.1038/s41467-018-06858-y
_version_ 1783364722490343424
author Folland, T. G.
Fali, A.
White, S. T.
Matson, J. R.
Liu, S.
Aghamiri, N. A.
Edgar, J. H.
Haglund, R. F.
Abate, Y.
Caldwell, J. D.
author_facet Folland, T. G.
Fali, A.
White, S. T.
Matson, J. R.
Liu, S.
Aghamiri, N. A.
Edgar, J. H.
Haglund, R. F.
Abate, Y.
Caldwell, J. D.
author_sort Folland, T. G.
collection PubMed
description Metasurfaces control light propagation at the nanoscale for applications in both free-space and surface-confined geometries. However, dynamically changing the properties of metasurfaces can be a major challenge. Here we demonstrate a reconfigurable hyperbolic metasurface comprised of a heterostructure of isotopically enriched hexagonal boron nitride (hBN) in direct contact with the phase-change material (PCM) single-crystal vanadium dioxide (VO(2)). Metallic and dielectric domains in VO(2) provide spatially localized changes in the local dielectric environment, enabling launching, reflection, and transmission of hyperbolic phonon polaritons (HPhPs) at the PCM domain boundaries, and tuning the wavelength of HPhPs propagating in hBN over these domains by a factor of 1.6. We show that this system supports in-plane HPhP refraction, thus providing a prototype for a class of planar refractive optics. This approach offers reconfigurable control of in-plane HPhP propagation and exemplifies a generalizable framework based on combining hyperbolic media and PCMs to design optical functionality.
format Online
Article
Text
id pubmed-6197242
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-61972422018-10-23 Reconfigurable infrared hyperbolic metasurfaces using phase change materials Folland, T. G. Fali, A. White, S. T. Matson, J. R. Liu, S. Aghamiri, N. A. Edgar, J. H. Haglund, R. F. Abate, Y. Caldwell, J. D. Nat Commun Article Metasurfaces control light propagation at the nanoscale for applications in both free-space and surface-confined geometries. However, dynamically changing the properties of metasurfaces can be a major challenge. Here we demonstrate a reconfigurable hyperbolic metasurface comprised of a heterostructure of isotopically enriched hexagonal boron nitride (hBN) in direct contact with the phase-change material (PCM) single-crystal vanadium dioxide (VO(2)). Metallic and dielectric domains in VO(2) provide spatially localized changes in the local dielectric environment, enabling launching, reflection, and transmission of hyperbolic phonon polaritons (HPhPs) at the PCM domain boundaries, and tuning the wavelength of HPhPs propagating in hBN over these domains by a factor of 1.6. We show that this system supports in-plane HPhP refraction, thus providing a prototype for a class of planar refractive optics. This approach offers reconfigurable control of in-plane HPhP propagation and exemplifies a generalizable framework based on combining hyperbolic media and PCMs to design optical functionality. Nature Publishing Group UK 2018-10-22 /pmc/articles/PMC6197242/ /pubmed/30349033 http://dx.doi.org/10.1038/s41467-018-06858-y Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Folland, T. G.
Fali, A.
White, S. T.
Matson, J. R.
Liu, S.
Aghamiri, N. A.
Edgar, J. H.
Haglund, R. F.
Abate, Y.
Caldwell, J. D.
Reconfigurable infrared hyperbolic metasurfaces using phase change materials
title Reconfigurable infrared hyperbolic metasurfaces using phase change materials
title_full Reconfigurable infrared hyperbolic metasurfaces using phase change materials
title_fullStr Reconfigurable infrared hyperbolic metasurfaces using phase change materials
title_full_unstemmed Reconfigurable infrared hyperbolic metasurfaces using phase change materials
title_short Reconfigurable infrared hyperbolic metasurfaces using phase change materials
title_sort reconfigurable infrared hyperbolic metasurfaces using phase change materials
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6197242/
https://www.ncbi.nlm.nih.gov/pubmed/30349033
http://dx.doi.org/10.1038/s41467-018-06858-y
work_keys_str_mv AT follandtg reconfigurableinfraredhyperbolicmetasurfacesusingphasechangematerials
AT falia reconfigurableinfraredhyperbolicmetasurfacesusingphasechangematerials
AT whitest reconfigurableinfraredhyperbolicmetasurfacesusingphasechangematerials
AT matsonjr reconfigurableinfraredhyperbolicmetasurfacesusingphasechangematerials
AT lius reconfigurableinfraredhyperbolicmetasurfacesusingphasechangematerials
AT aghamirina reconfigurableinfraredhyperbolicmetasurfacesusingphasechangematerials
AT edgarjh reconfigurableinfraredhyperbolicmetasurfacesusingphasechangematerials
AT haglundrf reconfigurableinfraredhyperbolicmetasurfacesusingphasechangematerials
AT abatey reconfigurableinfraredhyperbolicmetasurfacesusingphasechangematerials
AT caldwelljd reconfigurableinfraredhyperbolicmetasurfacesusingphasechangematerials