Cargando…
Modelling the brain response to arbitrary visual stimulation patterns for a flexible high-speed Brain-Computer Interface
Visual evoked potentials (VEPs) can be measured in the EEG as response to a visual stimulus. Commonly, VEPs are displayed by averaging multiple responses to a certain stimulus or a classifier is trained to identify the response to a certain stimulus. While the traditional approach is limited to a se...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6197660/ https://www.ncbi.nlm.nih.gov/pubmed/30346983 http://dx.doi.org/10.1371/journal.pone.0206107 |
Sumario: | Visual evoked potentials (VEPs) can be measured in the EEG as response to a visual stimulus. Commonly, VEPs are displayed by averaging multiple responses to a certain stimulus or a classifier is trained to identify the response to a certain stimulus. While the traditional approach is limited to a set of predefined stimulation patterns, we present a method that models the general process of VEP generation and thereby can be used to predict arbitrary visual stimulation patterns from EEG and predict how the brain responds to arbitrary stimulation patterns. We demonstrate how this method can be used to model single-flash VEPs, steady state VEPs (SSVEPs) or VEPs to complex stimulation patterns. It is further shown that this method can also be used for a high-speed BCI in an online scenario where it achieved an average information transfer rate (ITR) of 108.1 bit/min. Furthermore, in an offline analysis, we show the flexibility of the method allowing to modulate a virtually unlimited amount of targets with any desired trial duration resulting in a theoretically possible ITR of more than 470 bit/min. |
---|