Cargando…

Machine learning of neuroimaging for assisted diagnosis of cognitive impairment and dementia: A systematic review

INTRODUCTION: Advanced machine learning methods might help to identify dementia risk from neuroimaging, but their accuracy to date is unclear. METHODS: We systematically reviewed the literature, 2006 to late 2016, for machine learning studies differentiating healthy aging from dementia of various ty...

Descripción completa

Detalles Bibliográficos
Autores principales: Pellegrini, Enrico, Ballerini, Lucia, Hernandez, Maria del C. Valdes, Chappell, Francesca M., González-Castro, Victor, Anblagan, Devasuda, Danso, Samuel, Muñoz-Maniega, Susana, Job, Dominic, Pernet, Cyril, Mair, Grant, MacGillivray, Tom J., Trucco, Emanuele, Wardlaw, Joanna M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6197752/
https://www.ncbi.nlm.nih.gov/pubmed/30364671
http://dx.doi.org/10.1016/j.dadm.2018.07.004
_version_ 1783364835999744000
author Pellegrini, Enrico
Ballerini, Lucia
Hernandez, Maria del C. Valdes
Chappell, Francesca M.
González-Castro, Victor
Anblagan, Devasuda
Danso, Samuel
Muñoz-Maniega, Susana
Job, Dominic
Pernet, Cyril
Mair, Grant
MacGillivray, Tom J.
Trucco, Emanuele
Wardlaw, Joanna M.
author_facet Pellegrini, Enrico
Ballerini, Lucia
Hernandez, Maria del C. Valdes
Chappell, Francesca M.
González-Castro, Victor
Anblagan, Devasuda
Danso, Samuel
Muñoz-Maniega, Susana
Job, Dominic
Pernet, Cyril
Mair, Grant
MacGillivray, Tom J.
Trucco, Emanuele
Wardlaw, Joanna M.
author_sort Pellegrini, Enrico
collection PubMed
description INTRODUCTION: Advanced machine learning methods might help to identify dementia risk from neuroimaging, but their accuracy to date is unclear. METHODS: We systematically reviewed the literature, 2006 to late 2016, for machine learning studies differentiating healthy aging from dementia of various types, assessing study quality, and comparing accuracy at different disease boundaries. RESULTS: Of 111 relevant studies, most assessed Alzheimer's disease versus healthy controls, using AD Neuroimaging Initiative data, support vector machines, and only T1-weighted sequences. Accuracy was highest for differentiating Alzheimer's disease from healthy controls and poor for differentiating healthy controls versus mild cognitive impairment versus Alzheimer's disease or mild cognitive impairment converters versus nonconverters. Accuracy increased using combined data types, but not by data source, sample size, or machine learning method. DISCUSSION: Machine learning does not differentiate clinically relevant disease categories yet. More diverse data sets, combinations of different types of data, and close clinical integration of machine learning would help to advance the field.
format Online
Article
Text
id pubmed-6197752
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-61977522018-10-25 Machine learning of neuroimaging for assisted diagnosis of cognitive impairment and dementia: A systematic review Pellegrini, Enrico Ballerini, Lucia Hernandez, Maria del C. Valdes Chappell, Francesca M. González-Castro, Victor Anblagan, Devasuda Danso, Samuel Muñoz-Maniega, Susana Job, Dominic Pernet, Cyril Mair, Grant MacGillivray, Tom J. Trucco, Emanuele Wardlaw, Joanna M. Alzheimers Dement (Amst) Neuroimaging INTRODUCTION: Advanced machine learning methods might help to identify dementia risk from neuroimaging, but their accuracy to date is unclear. METHODS: We systematically reviewed the literature, 2006 to late 2016, for machine learning studies differentiating healthy aging from dementia of various types, assessing study quality, and comparing accuracy at different disease boundaries. RESULTS: Of 111 relevant studies, most assessed Alzheimer's disease versus healthy controls, using AD Neuroimaging Initiative data, support vector machines, and only T1-weighted sequences. Accuracy was highest for differentiating Alzheimer's disease from healthy controls and poor for differentiating healthy controls versus mild cognitive impairment versus Alzheimer's disease or mild cognitive impairment converters versus nonconverters. Accuracy increased using combined data types, but not by data source, sample size, or machine learning method. DISCUSSION: Machine learning does not differentiate clinically relevant disease categories yet. More diverse data sets, combinations of different types of data, and close clinical integration of machine learning would help to advance the field. Elsevier 2018-08-11 /pmc/articles/PMC6197752/ /pubmed/30364671 http://dx.doi.org/10.1016/j.dadm.2018.07.004 Text en © 2018 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Neuroimaging
Pellegrini, Enrico
Ballerini, Lucia
Hernandez, Maria del C. Valdes
Chappell, Francesca M.
González-Castro, Victor
Anblagan, Devasuda
Danso, Samuel
Muñoz-Maniega, Susana
Job, Dominic
Pernet, Cyril
Mair, Grant
MacGillivray, Tom J.
Trucco, Emanuele
Wardlaw, Joanna M.
Machine learning of neuroimaging for assisted diagnosis of cognitive impairment and dementia: A systematic review
title Machine learning of neuroimaging for assisted diagnosis of cognitive impairment and dementia: A systematic review
title_full Machine learning of neuroimaging for assisted diagnosis of cognitive impairment and dementia: A systematic review
title_fullStr Machine learning of neuroimaging for assisted diagnosis of cognitive impairment and dementia: A systematic review
title_full_unstemmed Machine learning of neuroimaging for assisted diagnosis of cognitive impairment and dementia: A systematic review
title_short Machine learning of neuroimaging for assisted diagnosis of cognitive impairment and dementia: A systematic review
title_sort machine learning of neuroimaging for assisted diagnosis of cognitive impairment and dementia: a systematic review
topic Neuroimaging
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6197752/
https://www.ncbi.nlm.nih.gov/pubmed/30364671
http://dx.doi.org/10.1016/j.dadm.2018.07.004
work_keys_str_mv AT pellegrinienrico machinelearningofneuroimagingforassisteddiagnosisofcognitiveimpairmentanddementiaasystematicreview
AT ballerinilucia machinelearningofneuroimagingforassisteddiagnosisofcognitiveimpairmentanddementiaasystematicreview
AT hernandezmariadelcvaldes machinelearningofneuroimagingforassisteddiagnosisofcognitiveimpairmentanddementiaasystematicreview
AT chappellfrancescam machinelearningofneuroimagingforassisteddiagnosisofcognitiveimpairmentanddementiaasystematicreview
AT gonzalezcastrovictor machinelearningofneuroimagingforassisteddiagnosisofcognitiveimpairmentanddementiaasystematicreview
AT anblagandevasuda machinelearningofneuroimagingforassisteddiagnosisofcognitiveimpairmentanddementiaasystematicreview
AT dansosamuel machinelearningofneuroimagingforassisteddiagnosisofcognitiveimpairmentanddementiaasystematicreview
AT munozmaniegasusana machinelearningofneuroimagingforassisteddiagnosisofcognitiveimpairmentanddementiaasystematicreview
AT jobdominic machinelearningofneuroimagingforassisteddiagnosisofcognitiveimpairmentanddementiaasystematicreview
AT pernetcyril machinelearningofneuroimagingforassisteddiagnosisofcognitiveimpairmentanddementiaasystematicreview
AT mairgrant machinelearningofneuroimagingforassisteddiagnosisofcognitiveimpairmentanddementiaasystematicreview
AT macgillivraytomj machinelearningofneuroimagingforassisteddiagnosisofcognitiveimpairmentanddementiaasystematicreview
AT truccoemanuele machinelearningofneuroimagingforassisteddiagnosisofcognitiveimpairmentanddementiaasystematicreview
AT wardlawjoannam machinelearningofneuroimagingforassisteddiagnosisofcognitiveimpairmentanddementiaasystematicreview