Cargando…

In Situ Observation of Atomic Redistribution in Alloying Gold–Silver Nanorods

[Image: see text] The catalytic performance and optical properties of bimetallic nanoparticles critically depend on the atomic distribution of the two metals in the nanoparticles. However, at elevated temperatures, during light-induced heating, or during catalysis, atomic redistribution can occur. M...

Descripción completa

Detalles Bibliográficos
Autores principales: van der Hoeven, Jessi E. S., Welling, Tom A. J., Silva, Tiago A. G., van den Reijen, Jeroen E., La Fontaine, Camille, Carrier, Xavier, Louis, Catherine, van Blaaderen, Alfons, de Jongh, Petra E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2018
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6197757/
https://www.ncbi.nlm.nih.gov/pubmed/30011370
http://dx.doi.org/10.1021/acsnano.8b03978
_version_ 1783364837166809088
author van der Hoeven, Jessi E. S.
Welling, Tom A. J.
Silva, Tiago A. G.
van den Reijen, Jeroen E.
La Fontaine, Camille
Carrier, Xavier
Louis, Catherine
van Blaaderen, Alfons
de Jongh, Petra E.
author_facet van der Hoeven, Jessi E. S.
Welling, Tom A. J.
Silva, Tiago A. G.
van den Reijen, Jeroen E.
La Fontaine, Camille
Carrier, Xavier
Louis, Catherine
van Blaaderen, Alfons
de Jongh, Petra E.
author_sort van der Hoeven, Jessi E. S.
collection PubMed
description [Image: see text] The catalytic performance and optical properties of bimetallic nanoparticles critically depend on the atomic distribution of the two metals in the nanoparticles. However, at elevated temperatures, during light-induced heating, or during catalysis, atomic redistribution can occur. Measuring such metal redistribution in situ is challenging, and a single experimental technique does not suffice. Furthermore, the availability of a well-defined nanoparticle system has been an obstacle for a systematic investigation of the key factors governing the atomic redistribution. In this study, we follow metal redistribution in precisely tunable, single-crystalline Au-core, Ag-shell nanorods in situ, both at a single particle and an ensemble-averaged level, by combining in situ transmission electron spectroscopy with in situ extended X-ray absorption fine structure validated by ex situ measurements. We show that the kinetics of atomic redistribution in Au–Ag nanoparticles depend on the metal composition and particle volume, such that a higher Ag content or a larger particle size led to significantly slower metal redistribution. We developed a simple theoretical model based on Fick’s first law that can correctly predict the composition- and size-dependent alloying behavior in Au–Ag nanoparticles, as observed experimentally.
format Online
Article
Text
id pubmed-6197757
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-61977572018-10-23 In Situ Observation of Atomic Redistribution in Alloying Gold–Silver Nanorods van der Hoeven, Jessi E. S. Welling, Tom A. J. Silva, Tiago A. G. van den Reijen, Jeroen E. La Fontaine, Camille Carrier, Xavier Louis, Catherine van Blaaderen, Alfons de Jongh, Petra E. ACS Nano [Image: see text] The catalytic performance and optical properties of bimetallic nanoparticles critically depend on the atomic distribution of the two metals in the nanoparticles. However, at elevated temperatures, during light-induced heating, or during catalysis, atomic redistribution can occur. Measuring such metal redistribution in situ is challenging, and a single experimental technique does not suffice. Furthermore, the availability of a well-defined nanoparticle system has been an obstacle for a systematic investigation of the key factors governing the atomic redistribution. In this study, we follow metal redistribution in precisely tunable, single-crystalline Au-core, Ag-shell nanorods in situ, both at a single particle and an ensemble-averaged level, by combining in situ transmission electron spectroscopy with in situ extended X-ray absorption fine structure validated by ex situ measurements. We show that the kinetics of atomic redistribution in Au–Ag nanoparticles depend on the metal composition and particle volume, such that a higher Ag content or a larger particle size led to significantly slower metal redistribution. We developed a simple theoretical model based on Fick’s first law that can correctly predict the composition- and size-dependent alloying behavior in Au–Ag nanoparticles, as observed experimentally. American Chemical Society 2018-07-16 2018-08-28 /pmc/articles/PMC6197757/ /pubmed/30011370 http://dx.doi.org/10.1021/acsnano.8b03978 Text en Copyright © 2018 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
spellingShingle van der Hoeven, Jessi E. S.
Welling, Tom A. J.
Silva, Tiago A. G.
van den Reijen, Jeroen E.
La Fontaine, Camille
Carrier, Xavier
Louis, Catherine
van Blaaderen, Alfons
de Jongh, Petra E.
In Situ Observation of Atomic Redistribution in Alloying Gold–Silver Nanorods
title In Situ Observation of Atomic Redistribution in Alloying Gold–Silver Nanorods
title_full In Situ Observation of Atomic Redistribution in Alloying Gold–Silver Nanorods
title_fullStr In Situ Observation of Atomic Redistribution in Alloying Gold–Silver Nanorods
title_full_unstemmed In Situ Observation of Atomic Redistribution in Alloying Gold–Silver Nanorods
title_short In Situ Observation of Atomic Redistribution in Alloying Gold–Silver Nanorods
title_sort in situ observation of atomic redistribution in alloying gold–silver nanorods
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6197757/
https://www.ncbi.nlm.nih.gov/pubmed/30011370
http://dx.doi.org/10.1021/acsnano.8b03978
work_keys_str_mv AT vanderhoevenjessies insituobservationofatomicredistributioninalloyinggoldsilvernanorods
AT wellingtomaj insituobservationofatomicredistributioninalloyinggoldsilvernanorods
AT silvatiagoag insituobservationofatomicredistributioninalloyinggoldsilvernanorods
AT vandenreijenjeroene insituobservationofatomicredistributioninalloyinggoldsilvernanorods
AT lafontainecamille insituobservationofatomicredistributioninalloyinggoldsilvernanorods
AT carrierxavier insituobservationofatomicredistributioninalloyinggoldsilvernanorods
AT louiscatherine insituobservationofatomicredistributioninalloyinggoldsilvernanorods
AT vanblaaderenalfons insituobservationofatomicredistributioninalloyinggoldsilvernanorods
AT dejonghpetrae insituobservationofatomicredistributioninalloyinggoldsilvernanorods