Cargando…

Inhibition of miR-449a Promotes Cartilage Regeneration and Prevents Progression of Osteoarthritis in In Vivo Rat Models

Traumatic and degenerative lesions of articular cartilage usually progress to osteoarthritis (OA), a leading cause of disability in humans. MicroRNAs (miRNAs) can regulate the differentiation of human bone marrow-derived mesenchymal stem cells (hBMSCs) and play important roles in the expression of g...

Descripción completa

Detalles Bibliográficos
Autores principales: Baek, Dawoon, Lee, Kyoung-Mi, Park, Ki Won, Suh, Jae Wan, Choi, Seong Mi, Park, Kwang Hwan, Lee, Jin Woo, Kim, Sung-Hwan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society of Gene & Cell Therapy 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6197768/
https://www.ncbi.nlm.nih.gov/pubmed/30326428
http://dx.doi.org/10.1016/j.omtn.2018.09.015
Descripción
Sumario:Traumatic and degenerative lesions of articular cartilage usually progress to osteoarthritis (OA), a leading cause of disability in humans. MicroRNAs (miRNAs) can regulate the differentiation of human bone marrow-derived mesenchymal stem cells (hBMSCs) and play important roles in the expression of genes related to OA. However, their functional roles in OA remain poorly understood. Here, we have examined miR-449a, which targets sirtuin 1 (SIRT1) and lymphoid enhancer-binding factor-1 (LEF-1), and observed its effects on damaged cartilage. The levels of chondrogenic markers and miR-449a target genes increased during chondrogenesis in anti-miR-449a-transfected hBMSCs. A locked nucleic acid (LNA)-anti-miR-449a increased cartilage regeneration and expression of type II collagen and aggrecan on the regenerated cartilage surface in acute defect and OA models. Furthermore, intra-articular injection of LNA-anti-miR-449a prevented disease progression in the OA model. Our study indicates that miR-449a may be a novel potential therapeutic target for age-related joint diseases like OA.