Cargando…

Simulation of kinematic Kikuchi diffraction patterns from atomistic structures

One of the limitations of atomistic simulations is that many of the computational tools used to extract structural information from atomic trajectories provide metrics that are not directly compatible with experiments for validation. In this work, to bridge between simulation and experiment, a metho...

Descripción completa

Detalles Bibliográficos
Autores principales: Herron, Adam D., Coleman, Shawn P., Dang, Khanh Q., Spearot, Douglas E., Homer, Eric R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6197776/
https://www.ncbi.nlm.nih.gov/pubmed/30364675
http://dx.doi.org/10.1016/j.mex.2018.09.001
Descripción
Sumario:One of the limitations of atomistic simulations is that many of the computational tools used to extract structural information from atomic trajectories provide metrics that are not directly compatible with experiments for validation. In this work, to bridge between simulation and experiment, a method is presented to produce simulated Kikuchi diffraction patterns using data from atomistic simulations, without requiring a priori specification of the crystal structure or defect periodicity. The Kikuchi pattern simulation is based on the kinematic theory of diffraction, with Kikuchi line intensities computed via a discrete structure factor calculation. Reciprocal lattice points are mapped to Kikuchi lines using a geometric projection of the reciprocal space data. This method is validated using single crystal atomistic models, and the novelty of this approach is emphasized by simulating kinematic Kikuchi diffraction patterns from an atomistic model containing a nanoscale dislocation loop. Deviations in kinematic Kikuchi line intensities are explained considering the displacement field of the dislocation loop, as is done in diffraction contrast theory.