Cargando…
Recurrent Deep Neural Networks for Real-Time Sleep Stage Classification From Single Channel EEG
Objective: We investigate the design of deep recurrent neural networks for detecting sleep stages from single channel EEG signals recorded at home by non-expert users. We report the effect of data set size, architecture choices, regularization, and personalization on the classification performance....
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6198094/ https://www.ncbi.nlm.nih.gov/pubmed/30386226 http://dx.doi.org/10.3389/fncom.2018.00085 |
Sumario: | Objective: We investigate the design of deep recurrent neural networks for detecting sleep stages from single channel EEG signals recorded at home by non-expert users. We report the effect of data set size, architecture choices, regularization, and personalization on the classification performance. Methods: We evaluated 58 different architectures and training configurations using three-fold cross validation. Results: A network consisting of convolutional (CONV) layers and long short term memory (LSTM) layers can achieve an agreement with a human annotator of Cohen's Kappa of ~0.73 using a training data set of 19 subjects. Regularization and personalization do not lead to a performance gain. Conclusion: The optimal neural network architecture achieves a performance that is very close to the previously reported human inter-expert agreement of Kappa 0.75. Significance: We give the first detailed account of CONV/LSTM network design process for EEG sleep staging in single channel home based setting. |
---|