Cargando…

Recurrent Deep Neural Networks for Real-Time Sleep Stage Classification From Single Channel EEG

Objective: We investigate the design of deep recurrent neural networks for detecting sleep stages from single channel EEG signals recorded at home by non-expert users. We report the effect of data set size, architecture choices, regularization, and personalization on the classification performance....

Descripción completa

Detalles Bibliográficos
Autores principales: Bresch, Erik, Großekathöfer, Ulf, Garcia-Molina, Gary
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6198094/
https://www.ncbi.nlm.nih.gov/pubmed/30386226
http://dx.doi.org/10.3389/fncom.2018.00085
Descripción
Sumario:Objective: We investigate the design of deep recurrent neural networks for detecting sleep stages from single channel EEG signals recorded at home by non-expert users. We report the effect of data set size, architecture choices, regularization, and personalization on the classification performance. Methods: We evaluated 58 different architectures and training configurations using three-fold cross validation. Results: A network consisting of convolutional (CONV) layers and long short term memory (LSTM) layers can achieve an agreement with a human annotator of Cohen's Kappa of ~0.73 using a training data set of 19 subjects. Regularization and personalization do not lead to a performance gain. Conclusion: The optimal neural network architecture achieves a performance that is very close to the previously reported human inter-expert agreement of Kappa 0.75. Significance: We give the first detailed account of CONV/LSTM network design process for EEG sleep staging in single channel home based setting.