Cargando…
Recurrent Deep Neural Networks for Real-Time Sleep Stage Classification From Single Channel EEG
Objective: We investigate the design of deep recurrent neural networks for detecting sleep stages from single channel EEG signals recorded at home by non-expert users. We report the effect of data set size, architecture choices, regularization, and personalization on the classification performance....
Autores principales: | Bresch, Erik, Großekathöfer, Ulf, Garcia-Molina, Gary |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6198094/ https://www.ncbi.nlm.nih.gov/pubmed/30386226 http://dx.doi.org/10.3389/fncom.2018.00085 |
Ejemplares similares
-
Automatic sleep staging of single-channel EEG based on domain adversarial neural networks and domain self-attention
por: Gao, Dong-Rui, et al.
Publicado: (2023) -
A Deep Transfer Learning Framework for Sleep Stage Classification with Single-Channel EEG Signals
por: ElMoaqet, Hisham, et al.
Publicado: (2022) -
Visualization of Whole-Night Sleep EEG From 2-Channel Mobile Recording Device Reveals Distinct Deep Sleep Stages with Differential Electrodermal Activity
por: Onton, Julie A., et al.
Publicado: (2016) -
Single‐channel EEG classification of sleep stages based on REM microstructure
por: Rechichi, Irene, et al.
Publicado: (2021) -
EEG-Based Emotion Classification Using a Deep Neural Network and Sparse Autoencoder
por: Liu, Junxiu, et al.
Publicado: (2020)