Cargando…
Persistence of radiation-induced aberrations in patients after radiotherapy with C-ions and IMRT
BACKGROUND AND PURPOSE: Chromosomal aberrations in peripheral blood lymphocytes are a biomarker for radiation exposure and are associated with an increased risk for malignancies. To determine the long-term cytogenetic effect of radiotherapy, we analyzed the persistence of different aberration types...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6198102/ https://www.ncbi.nlm.nih.gov/pubmed/30364751 http://dx.doi.org/10.1016/j.ctro.2018.10.002 |
Sumario: | BACKGROUND AND PURPOSE: Chromosomal aberrations in peripheral blood lymphocytes are a biomarker for radiation exposure and are associated with an increased risk for malignancies. To determine the long-term cytogenetic effect of radiotherapy, we analyzed the persistence of different aberration types up to 2.5 years after the treatment. MATERIALS AND METHODS: Cytogenetic damage was analyzed in lymphocytes from 14 patients that had undergone C-ion boost + IMRT treatment for prostate cancer. Samples were taken immediately, 1 year and 2.5 years after therapy. Aberrations were scored using the multiplex fluorescence in situ hybridization technique and grouped according to their transmissibility to daughter cells. RESULTS: Dicentric chromosomes (non-transmissible) and translocations (transmissible) were induced with equal frequencies. In the follow-up period, the translocation yield remained unchanged while the yield of dicentrics decreased to ≈40% of the initial value (p = 0.011 and p = 0.001 for 1 and 2.5 years after compared to end of therapy). In 2 patients clonal aberrations were observed; however they were also found in samples taken before therapy and thus were not radiotherapy induced. CONCLUSION: The shift in the aberrations spectrum towards a higher fraction of translocations indicates the exposure of hematopoietic stem and progenitor cells underlining the importance of a careful sparing of bone marrow during radiotherapy to minimize the risk for secondary cancers. |
---|