Cargando…
Robot End Effector Tracking Using Predictive Multisensory Integration
We propose a biologically inspired model that enables a humanoid robot to learn how to track its end effector by integrating visual and proprioceptive cues as it interacts with the environment. A key novel feature of this model is the incorporation of sensorimotor prediction, where the robot predict...
Autores principales: | Wijesinghe, Lakshitha P., Triesch, Jochen, Shi, Bertram E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6198278/ https://www.ncbi.nlm.nih.gov/pubmed/30386227 http://dx.doi.org/10.3389/fnbot.2018.00066 |
Ejemplares similares
-
Predictive coding and multisensory integration: an attentional account of the multisensory mind
por: Talsma, Durk
Publicado: (2015) -
Active head rolls enhance sonar-based auditory localization performance
por: Wijesinghe, Lakshitha P., et al.
Publicado: (2021) -
Inertial-Robotic Motion Tracking in End-Effector-Based Rehabilitation Robots
por: Passon, Arne, et al.
Publicado: (2020) -
Multisensory integration using dynamical Bayesian networks
por: Abbas Shangari, Taher, et al.
Publicado: (2015) -
Joint Learning of Binocularly Driven Saccades and Vergence by Active Efficient Coding
por: Zhu, Qingpeng, et al.
Publicado: (2017)