Cargando…
The revival of the Gini importance?
MOTIVATION: Random forests are fast, flexible and represent a robust approach to analyze high dimensional data. A key advantage over alternative machine learning algorithms are variable importance measures, which can be used to identify relevant features or perform variable selection. Measures based...
Autores principales: | Nembrini, Stefano, König, Inke R, Wright, Marvin N |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6198850/ https://www.ncbi.nlm.nih.gov/pubmed/29757357 http://dx.doi.org/10.1093/bioinformatics/bty373 |
Ejemplares similares
-
The role and robustness of the Gini coefficient as an unbiased tool for the selection of Gini genes for normalising expression profiling data
por: Wright Muelas, Marina, et al.
Publicado: (2019) -
GeneGini: Assessment via the Gini Coefficient of Reference “Housekeeping” Genes and Diverse Human Transporter Expression Profiles
por: O'Hagan, Steve, et al.
Publicado: (2018) -
Decomposition of the Gini index by income source for aggregated data and its applications
por: Shao, Bin
Publicado: (2021) -
Statistics and Demography : the Legacy of Corrado Gini
por: Crocetta, Corrado
Publicado: (2019) -
GiniClust: detecting rare cell types from single-cell gene expression data with Gini index
por: Jiang, Lan, et al.
Publicado: (2016)