Cargando…
PyCoTools: a Python toolbox for COPASI
MOTIVATION: COPASI is an open source software package for constructing, simulating and analyzing dynamic models of biochemical networks. COPASI is primarily intended to be used with a graphical user interface but often it is desirable to be able to access COPASI features programmatically, with a hig...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6198863/ https://www.ncbi.nlm.nih.gov/pubmed/29790940 http://dx.doi.org/10.1093/bioinformatics/bty409 |
_version_ | 1783365030988742656 |
---|---|
author | Welsh, Ciaran M Fullard, Nicola Proctor, Carole J Martinez-Guimera, Alvaro Isfort, Robert J Bascom, Charles C Tasseff, Ryan Przyborski, Stefan A Shanley, Daryl P |
author_facet | Welsh, Ciaran M Fullard, Nicola Proctor, Carole J Martinez-Guimera, Alvaro Isfort, Robert J Bascom, Charles C Tasseff, Ryan Przyborski, Stefan A Shanley, Daryl P |
author_sort | Welsh, Ciaran M |
collection | PubMed |
description | MOTIVATION: COPASI is an open source software package for constructing, simulating and analyzing dynamic models of biochemical networks. COPASI is primarily intended to be used with a graphical user interface but often it is desirable to be able to access COPASI features programmatically, with a high level interface. RESULTS: PyCoTools is a Python package aimed at providing a high level interface to COPASI tasks with an emphasis on model calibration. PyCoTools enables the construction of COPASI models and the execution of a subset of COPASI tasks including time courses, parameter scans and parameter estimations. Additional ‘composite’ tasks which use COPASI tasks as building blocks are available for increasing parameter estimation throughput, performing identifiability analysis and performing model selection. PyCoTools supports exploratory data analysis on parameter estimation data to assist with troubleshooting model calibrations. We demonstrate PyCoTools by posing a model selection problem designed to show case PyCoTools within a realistic scenario. The aim of the model selection problem is to test the feasibility of three alternative hypotheses in explaining experimental data derived from neonatal dermal fibroblasts in response to TGF-β over time. PyCoTools is used to critically analyze the parameter estimations and propose strategies for model improvement. AVAILABILITY AND IMPLEMENTATION: PyCoTools can be downloaded from the Python Package Index (PyPI) using the command ’pip install pycotools’ or directly from GitHub (https://github.com/CiaranWelsh/pycotools). Documentation at http://pycotools.readthedocs.io. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. |
format | Online Article Text |
id | pubmed-6198863 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-61988632018-10-26 PyCoTools: a Python toolbox for COPASI Welsh, Ciaran M Fullard, Nicola Proctor, Carole J Martinez-Guimera, Alvaro Isfort, Robert J Bascom, Charles C Tasseff, Ryan Przyborski, Stefan A Shanley, Daryl P Bioinformatics Original Papers MOTIVATION: COPASI is an open source software package for constructing, simulating and analyzing dynamic models of biochemical networks. COPASI is primarily intended to be used with a graphical user interface but often it is desirable to be able to access COPASI features programmatically, with a high level interface. RESULTS: PyCoTools is a Python package aimed at providing a high level interface to COPASI tasks with an emphasis on model calibration. PyCoTools enables the construction of COPASI models and the execution of a subset of COPASI tasks including time courses, parameter scans and parameter estimations. Additional ‘composite’ tasks which use COPASI tasks as building blocks are available for increasing parameter estimation throughput, performing identifiability analysis and performing model selection. PyCoTools supports exploratory data analysis on parameter estimation data to assist with troubleshooting model calibrations. We demonstrate PyCoTools by posing a model selection problem designed to show case PyCoTools within a realistic scenario. The aim of the model selection problem is to test the feasibility of three alternative hypotheses in explaining experimental data derived from neonatal dermal fibroblasts in response to TGF-β over time. PyCoTools is used to critically analyze the parameter estimations and propose strategies for model improvement. AVAILABILITY AND IMPLEMENTATION: PyCoTools can be downloaded from the Python Package Index (PyPI) using the command ’pip install pycotools’ or directly from GitHub (https://github.com/CiaranWelsh/pycotools). Documentation at http://pycotools.readthedocs.io. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. Oxford University Press 2018-11-01 2018-05-22 /pmc/articles/PMC6198863/ /pubmed/29790940 http://dx.doi.org/10.1093/bioinformatics/bty409 Text en © The Author(s) 2018. Published by Oxford University Press. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Papers Welsh, Ciaran M Fullard, Nicola Proctor, Carole J Martinez-Guimera, Alvaro Isfort, Robert J Bascom, Charles C Tasseff, Ryan Przyborski, Stefan A Shanley, Daryl P PyCoTools: a Python toolbox for COPASI |
title | PyCoTools: a Python toolbox for COPASI |
title_full | PyCoTools: a Python toolbox for COPASI |
title_fullStr | PyCoTools: a Python toolbox for COPASI |
title_full_unstemmed | PyCoTools: a Python toolbox for COPASI |
title_short | PyCoTools: a Python toolbox for COPASI |
title_sort | pycotools: a python toolbox for copasi |
topic | Original Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6198863/ https://www.ncbi.nlm.nih.gov/pubmed/29790940 http://dx.doi.org/10.1093/bioinformatics/bty409 |
work_keys_str_mv | AT welshciaranm pycotoolsapythontoolboxforcopasi AT fullardnicola pycotoolsapythontoolboxforcopasi AT proctorcarolej pycotoolsapythontoolboxforcopasi AT martinezguimeraalvaro pycotoolsapythontoolboxforcopasi AT isfortrobertj pycotoolsapythontoolboxforcopasi AT bascomcharlesc pycotoolsapythontoolboxforcopasi AT tasseffryan pycotoolsapythontoolboxforcopasi AT przyborskistefana pycotoolsapythontoolboxforcopasi AT shanleydarylp pycotoolsapythontoolboxforcopasi |