Cargando…

PyCoTools: a Python toolbox for COPASI

MOTIVATION: COPASI is an open source software package for constructing, simulating and analyzing dynamic models of biochemical networks. COPASI is primarily intended to be used with a graphical user interface but often it is desirable to be able to access COPASI features programmatically, with a hig...

Descripción completa

Detalles Bibliográficos
Autores principales: Welsh, Ciaran M, Fullard, Nicola, Proctor, Carole J, Martinez-Guimera, Alvaro, Isfort, Robert J, Bascom, Charles C, Tasseff, Ryan, Przyborski, Stefan A, Shanley, Daryl P
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6198863/
https://www.ncbi.nlm.nih.gov/pubmed/29790940
http://dx.doi.org/10.1093/bioinformatics/bty409
_version_ 1783365030988742656
author Welsh, Ciaran M
Fullard, Nicola
Proctor, Carole J
Martinez-Guimera, Alvaro
Isfort, Robert J
Bascom, Charles C
Tasseff, Ryan
Przyborski, Stefan A
Shanley, Daryl P
author_facet Welsh, Ciaran M
Fullard, Nicola
Proctor, Carole J
Martinez-Guimera, Alvaro
Isfort, Robert J
Bascom, Charles C
Tasseff, Ryan
Przyborski, Stefan A
Shanley, Daryl P
author_sort Welsh, Ciaran M
collection PubMed
description MOTIVATION: COPASI is an open source software package for constructing, simulating and analyzing dynamic models of biochemical networks. COPASI is primarily intended to be used with a graphical user interface but often it is desirable to be able to access COPASI features programmatically, with a high level interface. RESULTS: PyCoTools is a Python package aimed at providing a high level interface to COPASI tasks with an emphasis on model calibration. PyCoTools enables the construction of COPASI models and the execution of a subset of COPASI tasks including time courses, parameter scans and parameter estimations. Additional ‘composite’ tasks which use COPASI tasks as building blocks are available for increasing parameter estimation throughput, performing identifiability analysis and performing model selection. PyCoTools supports exploratory data analysis on parameter estimation data to assist with troubleshooting model calibrations. We demonstrate PyCoTools by posing a model selection problem designed to show case PyCoTools within a realistic scenario. The aim of the model selection problem is to test the feasibility of three alternative hypotheses in explaining experimental data derived from neonatal dermal fibroblasts in response to TGF-β over time. PyCoTools is used to critically analyze the parameter estimations and propose strategies for model improvement. AVAILABILITY AND IMPLEMENTATION: PyCoTools can be downloaded from the Python Package Index (PyPI) using the command ’pip install pycotools’ or directly from GitHub (https://github.com/CiaranWelsh/pycotools). Documentation at http://pycotools.readthedocs.io. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
format Online
Article
Text
id pubmed-6198863
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-61988632018-10-26 PyCoTools: a Python toolbox for COPASI Welsh, Ciaran M Fullard, Nicola Proctor, Carole J Martinez-Guimera, Alvaro Isfort, Robert J Bascom, Charles C Tasseff, Ryan Przyborski, Stefan A Shanley, Daryl P Bioinformatics Original Papers MOTIVATION: COPASI is an open source software package for constructing, simulating and analyzing dynamic models of biochemical networks. COPASI is primarily intended to be used with a graphical user interface but often it is desirable to be able to access COPASI features programmatically, with a high level interface. RESULTS: PyCoTools is a Python package aimed at providing a high level interface to COPASI tasks with an emphasis on model calibration. PyCoTools enables the construction of COPASI models and the execution of a subset of COPASI tasks including time courses, parameter scans and parameter estimations. Additional ‘composite’ tasks which use COPASI tasks as building blocks are available for increasing parameter estimation throughput, performing identifiability analysis and performing model selection. PyCoTools supports exploratory data analysis on parameter estimation data to assist with troubleshooting model calibrations. We demonstrate PyCoTools by posing a model selection problem designed to show case PyCoTools within a realistic scenario. The aim of the model selection problem is to test the feasibility of three alternative hypotheses in explaining experimental data derived from neonatal dermal fibroblasts in response to TGF-β over time. PyCoTools is used to critically analyze the parameter estimations and propose strategies for model improvement. AVAILABILITY AND IMPLEMENTATION: PyCoTools can be downloaded from the Python Package Index (PyPI) using the command ’pip install pycotools’ or directly from GitHub (https://github.com/CiaranWelsh/pycotools). Documentation at http://pycotools.readthedocs.io. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. Oxford University Press 2018-11-01 2018-05-22 /pmc/articles/PMC6198863/ /pubmed/29790940 http://dx.doi.org/10.1093/bioinformatics/bty409 Text en © The Author(s) 2018. Published by Oxford University Press. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Papers
Welsh, Ciaran M
Fullard, Nicola
Proctor, Carole J
Martinez-Guimera, Alvaro
Isfort, Robert J
Bascom, Charles C
Tasseff, Ryan
Przyborski, Stefan A
Shanley, Daryl P
PyCoTools: a Python toolbox for COPASI
title PyCoTools: a Python toolbox for COPASI
title_full PyCoTools: a Python toolbox for COPASI
title_fullStr PyCoTools: a Python toolbox for COPASI
title_full_unstemmed PyCoTools: a Python toolbox for COPASI
title_short PyCoTools: a Python toolbox for COPASI
title_sort pycotools: a python toolbox for copasi
topic Original Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6198863/
https://www.ncbi.nlm.nih.gov/pubmed/29790940
http://dx.doi.org/10.1093/bioinformatics/bty409
work_keys_str_mv AT welshciaranm pycotoolsapythontoolboxforcopasi
AT fullardnicola pycotoolsapythontoolboxforcopasi
AT proctorcarolej pycotoolsapythontoolboxforcopasi
AT martinezguimeraalvaro pycotoolsapythontoolboxforcopasi
AT isfortrobertj pycotoolsapythontoolboxforcopasi
AT bascomcharlesc pycotoolsapythontoolboxforcopasi
AT tasseffryan pycotoolsapythontoolboxforcopasi
AT przyborskistefana pycotoolsapythontoolboxforcopasi
AT shanleydarylp pycotoolsapythontoolboxforcopasi