Cargando…
A data-driven artificial intelligence model for remote triage in the prehospital environment
In a mass casualty incident, the factors that determine the survival rate of injured patients are diverse, but one of the key factors is the time for triage. Additionally, the main factor that determines the time of triage is the number of medical personnel. However, when relying on a small number o...
Autores principales: | Kim, Dohyun, You, Sungmin, So, Soonwon, Lee, Jongshill, Yook, Sunhyun, Jang, Dong Pyo, Kim, In Young, Park, Eunkyoung, Cho, Kyeongwon, Cha, Won Chul, Shin, Dong Wook, Cho, Baek Hwan, Park, Hoon-Ki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6198975/ https://www.ncbi.nlm.nih.gov/pubmed/30352077 http://dx.doi.org/10.1371/journal.pone.0206006 |
Ejemplares similares
-
Detecting Bladder Biomarkers for Closed-Loop Neuromodulation: A Technological Review
por: Park, Eunkyoung, et al.
Publicado: (2018) -
A Trainable Hearing Aid Algorithm Reflecting Individual Preferences for Degree of Noise-Suppression, Input Sound Level, and Listening Situation
por: Yoon, Sung Hoon, et al.
Publicado: (2017) -
Using the South African Triage Scale for prehospital triage: a qualitative study
por: Dixon, Julia, et al.
Publicado: (2021) -
Prehospital stroke mimics in the Stockholm Stroke Triage System
por: Sjöö, Mimmi, et al.
Publicado: (2022) -
Prehospital triage accuracy in a criteria based dispatch centre
por: Dami, Fabrice, et al.
Publicado: (2015)