Cargando…
Group sequential crossover trial designs with strong control of the familywise error rate
Crossover designs are an extremely useful tool to investigators, and group sequential methods have proven highly proficient at improving the efficiency of parallel group trials. Yet, group sequential methods and crossover designs have rarely been paired together. One possible explanation for this co...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6199128/ https://www.ncbi.nlm.nih.gov/pubmed/30393467 http://dx.doi.org/10.1080/07474946.2018.1466528 |
_version_ | 1783365084132671488 |
---|---|
author | Grayling, Michael J. Wason, James M. S. Mander, Adrian P. |
author_facet | Grayling, Michael J. Wason, James M. S. Mander, Adrian P. |
author_sort | Grayling, Michael J. |
collection | PubMed |
description | Crossover designs are an extremely useful tool to investigators, and group sequential methods have proven highly proficient at improving the efficiency of parallel group trials. Yet, group sequential methods and crossover designs have rarely been paired together. One possible explanation for this could be the absence of a formal proof of how to strongly control the familywise error rate in the case when multiple comparisons will be made. Here, we provide this proof, valid for any number of initial experimental treatments and any number of stages, when results are analyzed using a linear mixed model. We then establish formulae for the expected sample size and expected number of observations of such a trial, given any choice of stopping boundaries. Finally, utilizing the four-treatment, four-period TOMADO trial as an example, we demonstrate that group sequential methods in this setting could have reduced the trials expected number of observations under the global null hypothesis by over 33%. |
format | Online Article Text |
id | pubmed-6199128 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Taylor & Francis |
record_format | MEDLINE/PubMed |
spelling | pubmed-61991282018-10-31 Group sequential crossover trial designs with strong control of the familywise error rate Grayling, Michael J. Wason, James M. S. Mander, Adrian P. Seq Anal Original Articles Crossover designs are an extremely useful tool to investigators, and group sequential methods have proven highly proficient at improving the efficiency of parallel group trials. Yet, group sequential methods and crossover designs have rarely been paired together. One possible explanation for this could be the absence of a formal proof of how to strongly control the familywise error rate in the case when multiple comparisons will be made. Here, we provide this proof, valid for any number of initial experimental treatments and any number of stages, when results are analyzed using a linear mixed model. We then establish formulae for the expected sample size and expected number of observations of such a trial, given any choice of stopping boundaries. Finally, utilizing the four-treatment, four-period TOMADO trial as an example, we demonstrate that group sequential methods in this setting could have reduced the trials expected number of observations under the global null hypothesis by over 33%. Taylor & Francis 2018-10-02 /pmc/articles/PMC6199128/ /pubmed/30393467 http://dx.doi.org/10.1080/07474946.2018.1466528 Text en © 2018 The Authors. Published with license by Taylor & Francis Group, LLC. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Articles Grayling, Michael J. Wason, James M. S. Mander, Adrian P. Group sequential crossover trial designs with strong control of the familywise error rate |
title | Group sequential crossover trial designs with strong control of the
familywise error rate |
title_full | Group sequential crossover trial designs with strong control of the
familywise error rate |
title_fullStr | Group sequential crossover trial designs with strong control of the
familywise error rate |
title_full_unstemmed | Group sequential crossover trial designs with strong control of the
familywise error rate |
title_short | Group sequential crossover trial designs with strong control of the
familywise error rate |
title_sort | group sequential crossover trial designs with strong control of the
familywise error rate |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6199128/ https://www.ncbi.nlm.nih.gov/pubmed/30393467 http://dx.doi.org/10.1080/07474946.2018.1466528 |
work_keys_str_mv | AT graylingmichaelj groupsequentialcrossovertrialdesignswithstrongcontrolofthefamilywiseerrorrate AT wasonjamesms groupsequentialcrossovertrialdesignswithstrongcontrolofthefamilywiseerrorrate AT manderadrianp groupsequentialcrossovertrialdesignswithstrongcontrolofthefamilywiseerrorrate |