Cargando…
Red Spectral Shift in Sensitive Colorimetric Detection of Tuberculosis by ESAT-6 Antigen-Antibody Complex: a New Strategy with Gold Nanoparticle
Tuberculosis (TB) is a highly contagious life-threatening disease caused by the bacterial pathogen Mycobacterium tuberculosis. ESAT-6, an abundant early secretory antigenic target protein by M. tuberculosis, found to play a vital role in virulence. Developing a friendly method for the detection of E...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6199200/ https://www.ncbi.nlm.nih.gov/pubmed/30353254 http://dx.doi.org/10.1186/s11671-018-2753-5 |
Sumario: | Tuberculosis (TB) is a highly contagious life-threatening disease caused by the bacterial pathogen Mycobacterium tuberculosis. ESAT-6, an abundant early secretory antigenic target protein by M. tuberculosis, found to play a vital role in virulence. Developing a friendly method for the detection of ESAT-6 at the lower concentration facilitates to treat TB at an earlier stage and helps to control the spreading of disease. Herein, a new single-step approach was designed and was done by pre-mixing ESAT-6 and antibody before being added to the gold nanoparticle (GNP) followed by the salt-induced aggregation. We could attain the detection limit of 1.25 pM, showing the aggregation of GNP and the red spectral shift. Further, a higher specificity was demonstrated with the lack of electrostatic biofouling by ESAT-6 on GNP and retained the dispersed GNP in the presence of 10-kDa culture filtrate protein from M. tuberculosis. The required precise antibody concentration for this assay was found to be 60 nM. The increment in the antibody concentration from 75 nM drastically diminishes the sensitivity to ~ 680-fold, due to the crowding effect. With this assay, we attested the suitability of colorimetric assay for efficiently detecting the smaller-sized protein. |
---|