Cargando…
Targeted and Off-Target (Bystander and Abscopal) Effects of Radiation Therapy: Redox Mechanisms and Risk/Benefit Analysis
Significance: Radiation therapy (from external beams to unsealed and sealed radionuclide sources) takes advantage of the detrimental effects of the clustered production of radicals and reactive oxygen species (ROS). Research has mainly focused on the interaction of radiation with water, which is the...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Mary Ann Liebert, Inc., publishers
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6199630/ https://www.ncbi.nlm.nih.gov/pubmed/29350049 http://dx.doi.org/10.1089/ars.2017.7267 |
_version_ | 1783365174794649600 |
---|---|
author | Pouget, Jean-Pierre Georgakilas, Alexandros G. Ravanat, Jean-Luc |
author_facet | Pouget, Jean-Pierre Georgakilas, Alexandros G. Ravanat, Jean-Luc |
author_sort | Pouget, Jean-Pierre |
collection | PubMed |
description | Significance: Radiation therapy (from external beams to unsealed and sealed radionuclide sources) takes advantage of the detrimental effects of the clustered production of radicals and reactive oxygen species (ROS). Research has mainly focused on the interaction of radiation with water, which is the major constituent of living beings, and with nuclear DNA, which contains the genetic information. This led to the so-called target theory according to which cells have to be hit by ionizing particles to elicit an important biological response, including cell death. In cancer therapy, the Poisson law and linear quadratic mathematical models have been used to describe the probability of hits per cell as a function of the radiation dose. Recent Advances: However, in the last 20 years, many studies have shown that radiation generates “danger” signals that propagate from irradiated to nonirradiated cells, leading to bystander and other off-target effects. Critical Issues: Like for targeted effects, redox mechanisms play a key role also in off-target effects through transmission of ROS and reactive nitrogen species (RNS), and also of cytokines, ATP, and extracellular DNA. Particularly, nuclear factor kappa B is essential for triggering self-sustained production of ROS and RNS, thus making the bystander response similar to inflammation. In some therapeutic cases, this phenomenon is associated with recruitment of immune cells that are involved in distant irradiation effects (called “away-from-target” i.e., abscopal effects). Future Directions: Determining the contribution of targeted and off-target effects in the clinic is still challenging. This has important consequences not only in radiotherapy but also possibly in diagnostic procedures and in radiation protection. |
format | Online Article Text |
id | pubmed-6199630 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Mary Ann Liebert, Inc., publishers |
record_format | MEDLINE/PubMed |
spelling | pubmed-61996302018-10-24 Targeted and Off-Target (Bystander and Abscopal) Effects of Radiation Therapy: Redox Mechanisms and Risk/Benefit Analysis Pouget, Jean-Pierre Georgakilas, Alexandros G. Ravanat, Jean-Luc Antioxid Redox Signal Comprehensive Invited Review Significance: Radiation therapy (from external beams to unsealed and sealed radionuclide sources) takes advantage of the detrimental effects of the clustered production of radicals and reactive oxygen species (ROS). Research has mainly focused on the interaction of radiation with water, which is the major constituent of living beings, and with nuclear DNA, which contains the genetic information. This led to the so-called target theory according to which cells have to be hit by ionizing particles to elicit an important biological response, including cell death. In cancer therapy, the Poisson law and linear quadratic mathematical models have been used to describe the probability of hits per cell as a function of the radiation dose. Recent Advances: However, in the last 20 years, many studies have shown that radiation generates “danger” signals that propagate from irradiated to nonirradiated cells, leading to bystander and other off-target effects. Critical Issues: Like for targeted effects, redox mechanisms play a key role also in off-target effects through transmission of ROS and reactive nitrogen species (RNS), and also of cytokines, ATP, and extracellular DNA. Particularly, nuclear factor kappa B is essential for triggering self-sustained production of ROS and RNS, thus making the bystander response similar to inflammation. In some therapeutic cases, this phenomenon is associated with recruitment of immune cells that are involved in distant irradiation effects (called “away-from-target” i.e., abscopal effects). Future Directions: Determining the contribution of targeted and off-target effects in the clinic is still challenging. This has important consequences not only in radiotherapy but also possibly in diagnostic procedures and in radiation protection. Mary Ann Liebert, Inc., publishers 2018-11-20 2018-10-05 /pmc/articles/PMC6199630/ /pubmed/29350049 http://dx.doi.org/10.1089/ars.2017.7267 Text en © Jean-Pierre Pouget et al., 2018; Published by Mary Ann Liebert, Inc. This Open Access article is distributed under the terms of the Creative Commons License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Comprehensive Invited Review Pouget, Jean-Pierre Georgakilas, Alexandros G. Ravanat, Jean-Luc Targeted and Off-Target (Bystander and Abscopal) Effects of Radiation Therapy: Redox Mechanisms and Risk/Benefit Analysis |
title | Targeted and Off-Target (Bystander and Abscopal) Effects of Radiation Therapy: Redox Mechanisms and Risk/Benefit Analysis |
title_full | Targeted and Off-Target (Bystander and Abscopal) Effects of Radiation Therapy: Redox Mechanisms and Risk/Benefit Analysis |
title_fullStr | Targeted and Off-Target (Bystander and Abscopal) Effects of Radiation Therapy: Redox Mechanisms and Risk/Benefit Analysis |
title_full_unstemmed | Targeted and Off-Target (Bystander and Abscopal) Effects of Radiation Therapy: Redox Mechanisms and Risk/Benefit Analysis |
title_short | Targeted and Off-Target (Bystander and Abscopal) Effects of Radiation Therapy: Redox Mechanisms and Risk/Benefit Analysis |
title_sort | targeted and off-target (bystander and abscopal) effects of radiation therapy: redox mechanisms and risk/benefit analysis |
topic | Comprehensive Invited Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6199630/ https://www.ncbi.nlm.nih.gov/pubmed/29350049 http://dx.doi.org/10.1089/ars.2017.7267 |
work_keys_str_mv | AT pougetjeanpierre targetedandofftargetbystanderandabscopaleffectsofradiationtherapyredoxmechanismsandriskbenefitanalysis AT georgakilasalexandrosg targetedandofftargetbystanderandabscopaleffectsofradiationtherapyredoxmechanismsandriskbenefitanalysis AT ravanatjeanluc targetedandofftargetbystanderandabscopaleffectsofradiationtherapyredoxmechanismsandriskbenefitanalysis |