Cargando…
Tamoxifen inhibits chemokinesis in equine neutrophils
Neutrophils are terminally differentiated innate effector cells at the first line of host defense. Neutrophil migration within tissues is complex and involves several steps, during which these cells must be able to interpret a variety of chemical and physical signals. Exacerbated neutrophil activity...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6199699/ https://www.ncbi.nlm.nih.gov/pubmed/30386589 http://dx.doi.org/10.1186/s13620-018-0133-1 |
Sumario: | Neutrophils are terminally differentiated innate effector cells at the first line of host defense. Neutrophil migration within tissues is complex and involves several steps, during which these cells must be able to interpret a variety of chemical and physical signals. Exacerbated neutrophil activity can be harmful to surrounding tissues; this is important in a range of diseases, including equine asthma. Tamoxifen (TX) is a non-steroidal estrogen receptor modulator with effects on cell growth and survival. Previous studies showed that TX treatment in horses with induced acute pulmonary inflammation promoted early apoptosis of blood and bronchoalveolar lavage fluid (BALF) neutrophils, reduction of BALF neutrophil content, and improvement in animals’ clinical status. Further, TX dampens chemotactic index and respiratory burst production in vitro. The aim of this study was to provide information on the effect of TX on chemokinesis in peripheral blood neutrophils from five healthy horses. Results showed that neutrophils increased migration and travelled distance in response to IL-8; but in the presence of TX, IL-8 did not produce neutrophil migration. This suggests that TX has an inhibitory effect on the kinesis of equine peripheral blood neutrophils stimulated with IL-8. However, further studies are required to fully understand the signaling pathways of TX on neutrophil chemokinesis. |
---|