Cargando…

Genetic transformation of einkorn (Triticum monococcum L. ssp. monococcum L.), a diploid cultivated wheat species

BACKGROUND: Domesticated einkorn (Triticum monococcum L.) is one of the oldest cultivated cereal crops in the world. Its small genome size (~ 5.7 GB), low ploidy (2n = 2x = 14, A(m)A(m)) and high genetic polymorphism make this species very attractive for use as a diploid model for understanding the...

Descripción completa

Detalles Bibliográficos
Autores principales: Miroshnichenko, Dmitry, Ashin, Danila, Pushin, Alexander, Dolgov, Sergey
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6199808/
https://www.ncbi.nlm.nih.gov/pubmed/30352590
http://dx.doi.org/10.1186/s12896-018-0477-3
_version_ 1783365206242492416
author Miroshnichenko, Dmitry
Ashin, Danila
Pushin, Alexander
Dolgov, Sergey
author_facet Miroshnichenko, Dmitry
Ashin, Danila
Pushin, Alexander
Dolgov, Sergey
author_sort Miroshnichenko, Dmitry
collection PubMed
description BACKGROUND: Domesticated einkorn (Triticum monococcum L.) is one of the oldest cultivated cereal crops in the world. Its small genome size (~ 5.7 GB), low ploidy (2n = 2x = 14, A(m)A(m)) and high genetic polymorphism make this species very attractive for use as a diploid model for understanding the genomics and proteomics of Triticeae. Einkorn, however, is still a recalcitrant monocotyledonous species for the application of modern biotechnologies, including transgenesis. This paper reports the factors that may influence transgene delivery, integration, expression and inheritance in einkorn. RESULTS: In this study, we report the successful genetic transformation of einkorn using biolistic-mediated DNA delivery. Immature embryo-derived tissues of spring einkorn were bombarded with a plasmid containing the reporter gene GFP (green fluorescent protein) driven by the rice actin promoter (act1) and the selectable bar gene (bialaphos resistance gene) driven by the maize ubiquitin promoter (ubi1). Adjustments to various parameters such as gas pressure, microcarrier size and developmental stage of target tissue were essential for successful transient and stable transformation. Bombarded einkorn tissues are recalcitrant to regenerating plants, but certain modifications of the culture medium have been shown to increase the production of transgenic events. In various experiments, independent transgenic plants were produced at frequencies ranging from 0.0 to 0.6%. Molecular analysis, marker gene expression and herbicide treatment demonstrated that gfp/bar genes were stably integrated into the einkorn genome and successfully inherited over several generations. The transgenes, as dominant loci, segregated in both Mendelian and non-Mendelian fashion due to multiple insertions. Fertile homozygous T(1)-T(2) populations of transgenic einkorn that are resistant to herbicides were selected. CONCLUSION: To the best of our knowledge, this is the first report of the production of genetically modified einkorn plants. We believe that the results of our research could be a starting point for the application of the current biotechnological-based technologies, such as transgenesis and genome editing, to accelerate comparative functional genomics in einkorn and other cereals. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12896-018-0477-3) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-6199808
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-61998082018-10-31 Genetic transformation of einkorn (Triticum monococcum L. ssp. monococcum L.), a diploid cultivated wheat species Miroshnichenko, Dmitry Ashin, Danila Pushin, Alexander Dolgov, Sergey BMC Biotechnol Research Article BACKGROUND: Domesticated einkorn (Triticum monococcum L.) is one of the oldest cultivated cereal crops in the world. Its small genome size (~ 5.7 GB), low ploidy (2n = 2x = 14, A(m)A(m)) and high genetic polymorphism make this species very attractive for use as a diploid model for understanding the genomics and proteomics of Triticeae. Einkorn, however, is still a recalcitrant monocotyledonous species for the application of modern biotechnologies, including transgenesis. This paper reports the factors that may influence transgene delivery, integration, expression and inheritance in einkorn. RESULTS: In this study, we report the successful genetic transformation of einkorn using biolistic-mediated DNA delivery. Immature embryo-derived tissues of spring einkorn were bombarded with a plasmid containing the reporter gene GFP (green fluorescent protein) driven by the rice actin promoter (act1) and the selectable bar gene (bialaphos resistance gene) driven by the maize ubiquitin promoter (ubi1). Adjustments to various parameters such as gas pressure, microcarrier size and developmental stage of target tissue were essential for successful transient and stable transformation. Bombarded einkorn tissues are recalcitrant to regenerating plants, but certain modifications of the culture medium have been shown to increase the production of transgenic events. In various experiments, independent transgenic plants were produced at frequencies ranging from 0.0 to 0.6%. Molecular analysis, marker gene expression and herbicide treatment demonstrated that gfp/bar genes were stably integrated into the einkorn genome and successfully inherited over several generations. The transgenes, as dominant loci, segregated in both Mendelian and non-Mendelian fashion due to multiple insertions. Fertile homozygous T(1)-T(2) populations of transgenic einkorn that are resistant to herbicides were selected. CONCLUSION: To the best of our knowledge, this is the first report of the production of genetically modified einkorn plants. We believe that the results of our research could be a starting point for the application of the current biotechnological-based technologies, such as transgenesis and genome editing, to accelerate comparative functional genomics in einkorn and other cereals. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12896-018-0477-3) contains supplementary material, which is available to authorized users. BioMed Central 2018-10-23 /pmc/articles/PMC6199808/ /pubmed/30352590 http://dx.doi.org/10.1186/s12896-018-0477-3 Text en © The Author(s). 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research Article
Miroshnichenko, Dmitry
Ashin, Danila
Pushin, Alexander
Dolgov, Sergey
Genetic transformation of einkorn (Triticum monococcum L. ssp. monococcum L.), a diploid cultivated wheat species
title Genetic transformation of einkorn (Triticum monococcum L. ssp. monococcum L.), a diploid cultivated wheat species
title_full Genetic transformation of einkorn (Triticum monococcum L. ssp. monococcum L.), a diploid cultivated wheat species
title_fullStr Genetic transformation of einkorn (Triticum monococcum L. ssp. monococcum L.), a diploid cultivated wheat species
title_full_unstemmed Genetic transformation of einkorn (Triticum monococcum L. ssp. monococcum L.), a diploid cultivated wheat species
title_short Genetic transformation of einkorn (Triticum monococcum L. ssp. monococcum L.), a diploid cultivated wheat species
title_sort genetic transformation of einkorn (triticum monococcum l. ssp. monococcum l.), a diploid cultivated wheat species
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6199808/
https://www.ncbi.nlm.nih.gov/pubmed/30352590
http://dx.doi.org/10.1186/s12896-018-0477-3
work_keys_str_mv AT miroshnichenkodmitry genetictransformationofeinkorntriticummonococcumlsspmonococcumladiploidcultivatedwheatspecies
AT ashindanila genetictransformationofeinkorntriticummonococcumlsspmonococcumladiploidcultivatedwheatspecies
AT pushinalexander genetictransformationofeinkorntriticummonococcumlsspmonococcumladiploidcultivatedwheatspecies
AT dolgovsergey genetictransformationofeinkorntriticummonococcumlsspmonococcumladiploidcultivatedwheatspecies