Cargando…
Convolutional Networks Outperform Linear Decoders in Predicting EMG From Spinal Cord Signals
Advanced algorithms are required to reveal the complex relations between neural and behavioral data. In this study, forelimb electromyography (EMG) signals were reconstructed from multi-unit neural signals recorded with multiple electrode arrays (MEAs) from the corticospinal tract (CST) in rats. A s...
Autores principales: | Guo, Yi, Gok, Sinan, Sahin, Mesut |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6199918/ https://www.ncbi.nlm.nih.gov/pubmed/30386200 http://dx.doi.org/10.3389/fnins.2018.00689 |
Ejemplares similares
-
EMG feedback outperforms force feedback in the presence of prosthesis control disturbance
por: Tchimino, Jack, et al.
Publicado: (2022) -
Decoding Bilateral Hindlimb Kinematics From Cat Spinal Signals Using Three-Dimensional Convolutional Neural Network
por: Fathi, Yaser, et al.
Publicado: (2022) -
Evaluating Convolutional Neural Networks as a Method of EEG–EMG Fusion
por: Tryon, Jacob, et al.
Publicado: (2021) -
Broadband Prosthetic Interfaces: Combining Nerve Transfers and Implantable Multichannel EMG Technology to Decode Spinal Motor Neuron Activity
por: Bergmeister, Konstantin D., et al.
Publicado: (2017) -
Decoding P300 Variability Using Convolutional Neural Networks
por: Solon, Amelia J., et al.
Publicado: (2019)