Cargando…
Single copy/knock-in models of ALS SOD1 in C. elegans suggest loss and gain of function have different contributions to cholinergic and glutamatergic neurodegeneration
Mutations in Cu/Zn superoxide dismutase 1 (SOD1) lead to Amyotrophic Lateral Sclerosis (ALS), a neurodegenerative disease that disproportionately affects glutamatergic and cholinergic motor neurons. Previous work with SOD1 overexpression models supports a role for SOD1 toxic gain of function in ALS...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6200258/ https://www.ncbi.nlm.nih.gov/pubmed/30296255 http://dx.doi.org/10.1371/journal.pgen.1007682 |
_version_ | 1783365301862137856 |
---|---|
author | Baskoylu, Saba N. Yersak, Jill O’Hern, Patrick Grosser, Sarah Simon, Jonah Kim, Sarah Schuch, Kelsey Dimitriadi, Maria Yanagi, Katherine S. Lins, Jeremy Hart, Anne C. |
author_facet | Baskoylu, Saba N. Yersak, Jill O’Hern, Patrick Grosser, Sarah Simon, Jonah Kim, Sarah Schuch, Kelsey Dimitriadi, Maria Yanagi, Katherine S. Lins, Jeremy Hart, Anne C. |
author_sort | Baskoylu, Saba N. |
collection | PubMed |
description | Mutations in Cu/Zn superoxide dismutase 1 (SOD1) lead to Amyotrophic Lateral Sclerosis (ALS), a neurodegenerative disease that disproportionately affects glutamatergic and cholinergic motor neurons. Previous work with SOD1 overexpression models supports a role for SOD1 toxic gain of function in ALS pathogenesis. However, the impact of SOD1 loss of function in ALS cannot be directly examined in overexpression models. In addition, overexpression may obscure the contribution of SOD1 loss of function in the degeneration of different neuronal populations. Here, we report the first single-copy, ALS knock-in models in C. elegans generated by transposon- or CRISPR/Cas9- mediated genome editing of the endogenous sod-1 gene. Introduction of ALS patient amino acid changes A4V, H71Y, L84V, G85R or G93A into the C. elegans sod-1 gene yielded single-copy/knock-in ALS SOD1 models. These differ from previously reported overexpression models in multiple assays. In single-copy/knock-in models, we observed differential impact of sod-1 ALS alleles on glutamatergic and cholinergic neurodegeneration. A4V, H71Y, G85R, and G93A animals showed increased SOD1 protein accumulation and oxidative stress induced degeneration, consistent with a toxic gain of function in cholinergic motor neurons. By contrast, H71Y, L84V, and G85R lead to glutamatergic neuron degeneration due to sod-1 loss of function after oxidative stress. However, dopaminergic and serotonergic neuronal populations were spared in single-copy ALS models, suggesting a neuronal-subtype specificity previously not reported in invertebrate ALS SOD1 models. Combined, these results suggest that knock-in models may reproduce the neurotransmitter-type specificity of ALS and that both SOD1 loss and gain of toxic function differentially contribute to ALS pathogenesis in different neuronal populations. |
format | Online Article Text |
id | pubmed-6200258 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-62002582018-11-19 Single copy/knock-in models of ALS SOD1 in C. elegans suggest loss and gain of function have different contributions to cholinergic and glutamatergic neurodegeneration Baskoylu, Saba N. Yersak, Jill O’Hern, Patrick Grosser, Sarah Simon, Jonah Kim, Sarah Schuch, Kelsey Dimitriadi, Maria Yanagi, Katherine S. Lins, Jeremy Hart, Anne C. PLoS Genet Research Article Mutations in Cu/Zn superoxide dismutase 1 (SOD1) lead to Amyotrophic Lateral Sclerosis (ALS), a neurodegenerative disease that disproportionately affects glutamatergic and cholinergic motor neurons. Previous work with SOD1 overexpression models supports a role for SOD1 toxic gain of function in ALS pathogenesis. However, the impact of SOD1 loss of function in ALS cannot be directly examined in overexpression models. In addition, overexpression may obscure the contribution of SOD1 loss of function in the degeneration of different neuronal populations. Here, we report the first single-copy, ALS knock-in models in C. elegans generated by transposon- or CRISPR/Cas9- mediated genome editing of the endogenous sod-1 gene. Introduction of ALS patient amino acid changes A4V, H71Y, L84V, G85R or G93A into the C. elegans sod-1 gene yielded single-copy/knock-in ALS SOD1 models. These differ from previously reported overexpression models in multiple assays. In single-copy/knock-in models, we observed differential impact of sod-1 ALS alleles on glutamatergic and cholinergic neurodegeneration. A4V, H71Y, G85R, and G93A animals showed increased SOD1 protein accumulation and oxidative stress induced degeneration, consistent with a toxic gain of function in cholinergic motor neurons. By contrast, H71Y, L84V, and G85R lead to glutamatergic neuron degeneration due to sod-1 loss of function after oxidative stress. However, dopaminergic and serotonergic neuronal populations were spared in single-copy ALS models, suggesting a neuronal-subtype specificity previously not reported in invertebrate ALS SOD1 models. Combined, these results suggest that knock-in models may reproduce the neurotransmitter-type specificity of ALS and that both SOD1 loss and gain of toxic function differentially contribute to ALS pathogenesis in different neuronal populations. Public Library of Science 2018-10-08 /pmc/articles/PMC6200258/ /pubmed/30296255 http://dx.doi.org/10.1371/journal.pgen.1007682 Text en © 2018 Baskoylu et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Baskoylu, Saba N. Yersak, Jill O’Hern, Patrick Grosser, Sarah Simon, Jonah Kim, Sarah Schuch, Kelsey Dimitriadi, Maria Yanagi, Katherine S. Lins, Jeremy Hart, Anne C. Single copy/knock-in models of ALS SOD1 in C. elegans suggest loss and gain of function have different contributions to cholinergic and glutamatergic neurodegeneration |
title | Single copy/knock-in models of ALS SOD1 in C. elegans suggest loss and gain of function have different contributions to cholinergic and glutamatergic neurodegeneration |
title_full | Single copy/knock-in models of ALS SOD1 in C. elegans suggest loss and gain of function have different contributions to cholinergic and glutamatergic neurodegeneration |
title_fullStr | Single copy/knock-in models of ALS SOD1 in C. elegans suggest loss and gain of function have different contributions to cholinergic and glutamatergic neurodegeneration |
title_full_unstemmed | Single copy/knock-in models of ALS SOD1 in C. elegans suggest loss and gain of function have different contributions to cholinergic and glutamatergic neurodegeneration |
title_short | Single copy/knock-in models of ALS SOD1 in C. elegans suggest loss and gain of function have different contributions to cholinergic and glutamatergic neurodegeneration |
title_sort | single copy/knock-in models of als sod1 in c. elegans suggest loss and gain of function have different contributions to cholinergic and glutamatergic neurodegeneration |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6200258/ https://www.ncbi.nlm.nih.gov/pubmed/30296255 http://dx.doi.org/10.1371/journal.pgen.1007682 |
work_keys_str_mv | AT baskoylusaban singlecopyknockinmodelsofalssod1inceleganssuggestlossandgainoffunctionhavedifferentcontributionstocholinergicandglutamatergicneurodegeneration AT yersakjill singlecopyknockinmodelsofalssod1inceleganssuggestlossandgainoffunctionhavedifferentcontributionstocholinergicandglutamatergicneurodegeneration AT ohernpatrick singlecopyknockinmodelsofalssod1inceleganssuggestlossandgainoffunctionhavedifferentcontributionstocholinergicandglutamatergicneurodegeneration AT grossersarah singlecopyknockinmodelsofalssod1inceleganssuggestlossandgainoffunctionhavedifferentcontributionstocholinergicandglutamatergicneurodegeneration AT simonjonah singlecopyknockinmodelsofalssod1inceleganssuggestlossandgainoffunctionhavedifferentcontributionstocholinergicandglutamatergicneurodegeneration AT kimsarah singlecopyknockinmodelsofalssod1inceleganssuggestlossandgainoffunctionhavedifferentcontributionstocholinergicandglutamatergicneurodegeneration AT schuchkelsey singlecopyknockinmodelsofalssod1inceleganssuggestlossandgainoffunctionhavedifferentcontributionstocholinergicandglutamatergicneurodegeneration AT dimitriadimaria singlecopyknockinmodelsofalssod1inceleganssuggestlossandgainoffunctionhavedifferentcontributionstocholinergicandglutamatergicneurodegeneration AT yanagikatherines singlecopyknockinmodelsofalssod1inceleganssuggestlossandgainoffunctionhavedifferentcontributionstocholinergicandglutamatergicneurodegeneration AT linsjeremy singlecopyknockinmodelsofalssod1inceleganssuggestlossandgainoffunctionhavedifferentcontributionstocholinergicandglutamatergicneurodegeneration AT hartannec singlecopyknockinmodelsofalssod1inceleganssuggestlossandgainoffunctionhavedifferentcontributionstocholinergicandglutamatergicneurodegeneration |