Cargando…

Single copy/knock-in models of ALS SOD1 in C. elegans suggest loss and gain of function have different contributions to cholinergic and glutamatergic neurodegeneration

Mutations in Cu/Zn superoxide dismutase 1 (SOD1) lead to Amyotrophic Lateral Sclerosis (ALS), a neurodegenerative disease that disproportionately affects glutamatergic and cholinergic motor neurons. Previous work with SOD1 overexpression models supports a role for SOD1 toxic gain of function in ALS...

Descripción completa

Detalles Bibliográficos
Autores principales: Baskoylu, Saba N., Yersak, Jill, O’Hern, Patrick, Grosser, Sarah, Simon, Jonah, Kim, Sarah, Schuch, Kelsey, Dimitriadi, Maria, Yanagi, Katherine S., Lins, Jeremy, Hart, Anne C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6200258/
https://www.ncbi.nlm.nih.gov/pubmed/30296255
http://dx.doi.org/10.1371/journal.pgen.1007682
_version_ 1783365301862137856
author Baskoylu, Saba N.
Yersak, Jill
O’Hern, Patrick
Grosser, Sarah
Simon, Jonah
Kim, Sarah
Schuch, Kelsey
Dimitriadi, Maria
Yanagi, Katherine S.
Lins, Jeremy
Hart, Anne C.
author_facet Baskoylu, Saba N.
Yersak, Jill
O’Hern, Patrick
Grosser, Sarah
Simon, Jonah
Kim, Sarah
Schuch, Kelsey
Dimitriadi, Maria
Yanagi, Katherine S.
Lins, Jeremy
Hart, Anne C.
author_sort Baskoylu, Saba N.
collection PubMed
description Mutations in Cu/Zn superoxide dismutase 1 (SOD1) lead to Amyotrophic Lateral Sclerosis (ALS), a neurodegenerative disease that disproportionately affects glutamatergic and cholinergic motor neurons. Previous work with SOD1 overexpression models supports a role for SOD1 toxic gain of function in ALS pathogenesis. However, the impact of SOD1 loss of function in ALS cannot be directly examined in overexpression models. In addition, overexpression may obscure the contribution of SOD1 loss of function in the degeneration of different neuronal populations. Here, we report the first single-copy, ALS knock-in models in C. elegans generated by transposon- or CRISPR/Cas9- mediated genome editing of the endogenous sod-1 gene. Introduction of ALS patient amino acid changes A4V, H71Y, L84V, G85R or G93A into the C. elegans sod-1 gene yielded single-copy/knock-in ALS SOD1 models. These differ from previously reported overexpression models in multiple assays. In single-copy/knock-in models, we observed differential impact of sod-1 ALS alleles on glutamatergic and cholinergic neurodegeneration. A4V, H71Y, G85R, and G93A animals showed increased SOD1 protein accumulation and oxidative stress induced degeneration, consistent with a toxic gain of function in cholinergic motor neurons. By contrast, H71Y, L84V, and G85R lead to glutamatergic neuron degeneration due to sod-1 loss of function after oxidative stress. However, dopaminergic and serotonergic neuronal populations were spared in single-copy ALS models, suggesting a neuronal-subtype specificity previously not reported in invertebrate ALS SOD1 models. Combined, these results suggest that knock-in models may reproduce the neurotransmitter-type specificity of ALS and that both SOD1 loss and gain of toxic function differentially contribute to ALS pathogenesis in different neuronal populations.
format Online
Article
Text
id pubmed-6200258
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-62002582018-11-19 Single copy/knock-in models of ALS SOD1 in C. elegans suggest loss and gain of function have different contributions to cholinergic and glutamatergic neurodegeneration Baskoylu, Saba N. Yersak, Jill O’Hern, Patrick Grosser, Sarah Simon, Jonah Kim, Sarah Schuch, Kelsey Dimitriadi, Maria Yanagi, Katherine S. Lins, Jeremy Hart, Anne C. PLoS Genet Research Article Mutations in Cu/Zn superoxide dismutase 1 (SOD1) lead to Amyotrophic Lateral Sclerosis (ALS), a neurodegenerative disease that disproportionately affects glutamatergic and cholinergic motor neurons. Previous work with SOD1 overexpression models supports a role for SOD1 toxic gain of function in ALS pathogenesis. However, the impact of SOD1 loss of function in ALS cannot be directly examined in overexpression models. In addition, overexpression may obscure the contribution of SOD1 loss of function in the degeneration of different neuronal populations. Here, we report the first single-copy, ALS knock-in models in C. elegans generated by transposon- or CRISPR/Cas9- mediated genome editing of the endogenous sod-1 gene. Introduction of ALS patient amino acid changes A4V, H71Y, L84V, G85R or G93A into the C. elegans sod-1 gene yielded single-copy/knock-in ALS SOD1 models. These differ from previously reported overexpression models in multiple assays. In single-copy/knock-in models, we observed differential impact of sod-1 ALS alleles on glutamatergic and cholinergic neurodegeneration. A4V, H71Y, G85R, and G93A animals showed increased SOD1 protein accumulation and oxidative stress induced degeneration, consistent with a toxic gain of function in cholinergic motor neurons. By contrast, H71Y, L84V, and G85R lead to glutamatergic neuron degeneration due to sod-1 loss of function after oxidative stress. However, dopaminergic and serotonergic neuronal populations were spared in single-copy ALS models, suggesting a neuronal-subtype specificity previously not reported in invertebrate ALS SOD1 models. Combined, these results suggest that knock-in models may reproduce the neurotransmitter-type specificity of ALS and that both SOD1 loss and gain of toxic function differentially contribute to ALS pathogenesis in different neuronal populations. Public Library of Science 2018-10-08 /pmc/articles/PMC6200258/ /pubmed/30296255 http://dx.doi.org/10.1371/journal.pgen.1007682 Text en © 2018 Baskoylu et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Baskoylu, Saba N.
Yersak, Jill
O’Hern, Patrick
Grosser, Sarah
Simon, Jonah
Kim, Sarah
Schuch, Kelsey
Dimitriadi, Maria
Yanagi, Katherine S.
Lins, Jeremy
Hart, Anne C.
Single copy/knock-in models of ALS SOD1 in C. elegans suggest loss and gain of function have different contributions to cholinergic and glutamatergic neurodegeneration
title Single copy/knock-in models of ALS SOD1 in C. elegans suggest loss and gain of function have different contributions to cholinergic and glutamatergic neurodegeneration
title_full Single copy/knock-in models of ALS SOD1 in C. elegans suggest loss and gain of function have different contributions to cholinergic and glutamatergic neurodegeneration
title_fullStr Single copy/knock-in models of ALS SOD1 in C. elegans suggest loss and gain of function have different contributions to cholinergic and glutamatergic neurodegeneration
title_full_unstemmed Single copy/knock-in models of ALS SOD1 in C. elegans suggest loss and gain of function have different contributions to cholinergic and glutamatergic neurodegeneration
title_short Single copy/knock-in models of ALS SOD1 in C. elegans suggest loss and gain of function have different contributions to cholinergic and glutamatergic neurodegeneration
title_sort single copy/knock-in models of als sod1 in c. elegans suggest loss and gain of function have different contributions to cholinergic and glutamatergic neurodegeneration
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6200258/
https://www.ncbi.nlm.nih.gov/pubmed/30296255
http://dx.doi.org/10.1371/journal.pgen.1007682
work_keys_str_mv AT baskoylusaban singlecopyknockinmodelsofalssod1inceleganssuggestlossandgainoffunctionhavedifferentcontributionstocholinergicandglutamatergicneurodegeneration
AT yersakjill singlecopyknockinmodelsofalssod1inceleganssuggestlossandgainoffunctionhavedifferentcontributionstocholinergicandglutamatergicneurodegeneration
AT ohernpatrick singlecopyknockinmodelsofalssod1inceleganssuggestlossandgainoffunctionhavedifferentcontributionstocholinergicandglutamatergicneurodegeneration
AT grossersarah singlecopyknockinmodelsofalssod1inceleganssuggestlossandgainoffunctionhavedifferentcontributionstocholinergicandglutamatergicneurodegeneration
AT simonjonah singlecopyknockinmodelsofalssod1inceleganssuggestlossandgainoffunctionhavedifferentcontributionstocholinergicandglutamatergicneurodegeneration
AT kimsarah singlecopyknockinmodelsofalssod1inceleganssuggestlossandgainoffunctionhavedifferentcontributionstocholinergicandglutamatergicneurodegeneration
AT schuchkelsey singlecopyknockinmodelsofalssod1inceleganssuggestlossandgainoffunctionhavedifferentcontributionstocholinergicandglutamatergicneurodegeneration
AT dimitriadimaria singlecopyknockinmodelsofalssod1inceleganssuggestlossandgainoffunctionhavedifferentcontributionstocholinergicandglutamatergicneurodegeneration
AT yanagikatherines singlecopyknockinmodelsofalssod1inceleganssuggestlossandgainoffunctionhavedifferentcontributionstocholinergicandglutamatergicneurodegeneration
AT linsjeremy singlecopyknockinmodelsofalssod1inceleganssuggestlossandgainoffunctionhavedifferentcontributionstocholinergicandglutamatergicneurodegeneration
AT hartannec singlecopyknockinmodelsofalssod1inceleganssuggestlossandgainoffunctionhavedifferentcontributionstocholinergicandglutamatergicneurodegeneration