Cargando…
Prediction of high anti-angiogenic activity peptides in silico using a generalized linear model and feature selection
Screening and in silico modeling are critical activities for the reduction of experimental costs. They also speed up research notably and strengthen the theoretical framework, thus allowing researchers to numerically quantify the importance of a particular subset of information. For example, in fiel...
Autores principales: | Blanco, Jose Liñares, Porto-Pazos, Ana B., Pazos, Alejandro, Fernandez-Lozano, Carlos |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6200741/ https://www.ncbi.nlm.nih.gov/pubmed/30356060 http://dx.doi.org/10.1038/s41598-018-33911-z |
Ejemplares similares
-
Machine learning analysis of TCGA cancer data
por: Liñares-Blanco, Jose, et al.
Publicado: (2021) -
Molecular docking and machine learning analysis of Abemaciclib in colon cancer
por: Liñares-Blanco, Jose, et al.
Publicado: (2020) -
Computational Models of Neuron-Astrocyte Interactions Lead to Improved Efficacy in the Performance of Neural Networks
por: Alvarellos-González, Alberto, et al.
Publicado: (2012) -
Deep Artificial Neural Networks and Neuromorphic Chips for Big Data Analysis: Pharmaceutical and Bioinformatics Applications
por: Pastur-Romay, Lucas Antón, et al.
Publicado: (2016) -
A review on machine learning approaches and trends in drug discovery
por: Carracedo-Reboredo, Paula, et al.
Publicado: (2021)