Cargando…

Target-distractor competition cannot be resolved across a saccade

When a distractor is presented in close spatial proximity to a target, a saccade tends to land in between the two objects rather than on the target. This robust phenomenon (also referred to as the global effect) is thought to reflect unresolved competition between target and distractor. It is unclea...

Descripción completa

Detalles Bibliográficos
Autores principales: Arkesteijn, Kiki, Smeets, Jeroen B. J., Donk, Mieke, Belopolsky, Artem V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6200742/
https://www.ncbi.nlm.nih.gov/pubmed/30356170
http://dx.doi.org/10.1038/s41598-018-34120-4
Descripción
Sumario:When a distractor is presented in close spatial proximity to a target, a saccade tends to land in between the two objects rather than on the target. This robust phenomenon (also referred to as the global effect) is thought to reflect unresolved competition between target and distractor. It is unclear whether this landing bias persists across saccades since a saccade displaces the retinotopic representations of target and distractor. In the present study participants made successive saccades towards two saccadic targets which were presented simultaneously with an irrelevant distractor in close proximity to the second saccade target. The second saccade was either visually-guided or memory-guided. For the memory-guided trials, the second saccade showed a landing bias towards the location of the distractor, despite the disappearance of the distractor after the first saccade. In contrast, for the visually-guided trials, the bias was corrected and the landing bias was eliminated, even for saccades with the shortest intersaccadic intervals. This suggests that the biased saccade plan was remapped across the first saccade. Therefore, we conclude that the target-distractor competition was not resolved across a saccade, but can be resolved based on visual information that is available after a saccade.