Cargando…
Late Bayesian inference in mental transformations
Many skills rely on performing noisy mental computations on noisy sensory measurements. Bayesian models suggest that humans compensate for measurement noise and reduce behavioral variability by biasing perception toward prior expectations. Whether a similar strategy is employed to compensate for noi...
Autores principales: | Remington, Evan D., Parks, Tiffany V., Jazayeri, Mehrdad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6200789/ https://www.ncbi.nlm.nih.gov/pubmed/30356049 http://dx.doi.org/10.1038/s41467-018-06726-9 |
Ejemplares similares
-
A cerebellar mechanism for learning prior distributions of time intervals
por: Narain, Devika, et al.
Publicado: (2018) -
Internal models of sensorimotor integration regulate cortical dynamics
por: Egger, Seth W., et al.
Publicado: (2019) -
A Bayesian Hyperparameter Inference for Radon-Transformed Image Reconstruction
por: Shouno, Hayaru, et al.
Publicado: (2011) -
Validating model-based Bayesian integration using prior–cost metamers
por: Sohn, Hansem, et al.
Publicado: (2021) -
A nonlinear updating algorithm captures suboptimal inference in the presence of signal-dependent noise
por: Egger, Seth W., et al.
Publicado: (2018)