Cargando…
Hydrogen Peroxide-Based Fluorometric Assay for Real-Time Monitoring of SAM-Dependent Methyltransferases
Methylated chemicals are widely used as key intermediates for the syntheses of pharmaceuticals, fragrances, flavors, biofuels and plastics. In nature, the process of methylation is commonly undertaken by a super-family of S-adenosyl methionine-dependent enzymes known as methyltransferases. Herein, w...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6200863/ https://www.ncbi.nlm.nih.gov/pubmed/30406092 http://dx.doi.org/10.3389/fbioe.2018.00146 |
_version_ | 1783365411284189184 |
---|---|
author | Akhtar, M. Kalim Vijay, Dhanya Umbreen, Saima McLean, Chris J. Cai, Yizhi Campopiano, Dominic J. Loake, Gary J. |
author_facet | Akhtar, M. Kalim Vijay, Dhanya Umbreen, Saima McLean, Chris J. Cai, Yizhi Campopiano, Dominic J. Loake, Gary J. |
author_sort | Akhtar, M. Kalim |
collection | PubMed |
description | Methylated chemicals are widely used as key intermediates for the syntheses of pharmaceuticals, fragrances, flavors, biofuels and plastics. In nature, the process of methylation is commonly undertaken by a super-family of S-adenosyl methionine-dependent enzymes known as methyltransferases. Herein, we describe a novel high throughput enzyme-coupled assay for determining methyltransferase activites. Adenosylhomocysteine nucleosidase, xanthine oxidase, and horseradish peroxidase enzymes were shown to function in tandem to generate a fluorescence signal in the presence of S-adenosyl-L-homocysteine and Amplex Red (10-acetyl-3,7-dihydroxyphenoxazine). Since S-adenosyl-L-homocysteine is a key by-product of reactions catalyzed by S-adenosyl methionine-dependent methyltransferases, the coupling enzymes were used to assess the activities of EcoRI methyltransferase and a salicylic acid methyltransferase from Clarkia breweri in the presence of S-adenosyl methionine. For the EcoRI methyltransferase, the assay was sensitive enough to allow the monitoring of DNA methylation in the nanomolar range. In the case of the salicylic acid methyltransferase, detectable activity was observed for several substrates including salicylic acid, benzoic acid, 3-hydroxybenzoic acid, and vanillic acid. Additionally, the de novo synthesis of the relatively expensive and unstable cosubstrate, S-adenosyl methionine, catalyzed by methionine adenosyltransferase could be incorporated within the assay. Overall, the assay offers an excellent level of sensitivity that permits continuous and reliable monitoring of methyltransferase activities. We anticipate this assay will serve as a useful bioanalytical tool for the rapid screening of S-adenosyl methionine-dependent methyltransferase activities. |
format | Online Article Text |
id | pubmed-6200863 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-62008632018-11-07 Hydrogen Peroxide-Based Fluorometric Assay for Real-Time Monitoring of SAM-Dependent Methyltransferases Akhtar, M. Kalim Vijay, Dhanya Umbreen, Saima McLean, Chris J. Cai, Yizhi Campopiano, Dominic J. Loake, Gary J. Front Bioeng Biotechnol Bioengineering and Biotechnology Methylated chemicals are widely used as key intermediates for the syntheses of pharmaceuticals, fragrances, flavors, biofuels and plastics. In nature, the process of methylation is commonly undertaken by a super-family of S-adenosyl methionine-dependent enzymes known as methyltransferases. Herein, we describe a novel high throughput enzyme-coupled assay for determining methyltransferase activites. Adenosylhomocysteine nucleosidase, xanthine oxidase, and horseradish peroxidase enzymes were shown to function in tandem to generate a fluorescence signal in the presence of S-adenosyl-L-homocysteine and Amplex Red (10-acetyl-3,7-dihydroxyphenoxazine). Since S-adenosyl-L-homocysteine is a key by-product of reactions catalyzed by S-adenosyl methionine-dependent methyltransferases, the coupling enzymes were used to assess the activities of EcoRI methyltransferase and a salicylic acid methyltransferase from Clarkia breweri in the presence of S-adenosyl methionine. For the EcoRI methyltransferase, the assay was sensitive enough to allow the monitoring of DNA methylation in the nanomolar range. In the case of the salicylic acid methyltransferase, detectable activity was observed for several substrates including salicylic acid, benzoic acid, 3-hydroxybenzoic acid, and vanillic acid. Additionally, the de novo synthesis of the relatively expensive and unstable cosubstrate, S-adenosyl methionine, catalyzed by methionine adenosyltransferase could be incorporated within the assay. Overall, the assay offers an excellent level of sensitivity that permits continuous and reliable monitoring of methyltransferase activities. We anticipate this assay will serve as a useful bioanalytical tool for the rapid screening of S-adenosyl methionine-dependent methyltransferase activities. Frontiers Media S.A. 2018-10-18 /pmc/articles/PMC6200863/ /pubmed/30406092 http://dx.doi.org/10.3389/fbioe.2018.00146 Text en Copyright © 2018 Akhtar, Vijay, Umbreen, McLean, Cai, Campopiano and Loake. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Bioengineering and Biotechnology Akhtar, M. Kalim Vijay, Dhanya Umbreen, Saima McLean, Chris J. Cai, Yizhi Campopiano, Dominic J. Loake, Gary J. Hydrogen Peroxide-Based Fluorometric Assay for Real-Time Monitoring of SAM-Dependent Methyltransferases |
title | Hydrogen Peroxide-Based Fluorometric Assay for Real-Time Monitoring of SAM-Dependent Methyltransferases |
title_full | Hydrogen Peroxide-Based Fluorometric Assay for Real-Time Monitoring of SAM-Dependent Methyltransferases |
title_fullStr | Hydrogen Peroxide-Based Fluorometric Assay for Real-Time Monitoring of SAM-Dependent Methyltransferases |
title_full_unstemmed | Hydrogen Peroxide-Based Fluorometric Assay for Real-Time Monitoring of SAM-Dependent Methyltransferases |
title_short | Hydrogen Peroxide-Based Fluorometric Assay for Real-Time Monitoring of SAM-Dependent Methyltransferases |
title_sort | hydrogen peroxide-based fluorometric assay for real-time monitoring of sam-dependent methyltransferases |
topic | Bioengineering and Biotechnology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6200863/ https://www.ncbi.nlm.nih.gov/pubmed/30406092 http://dx.doi.org/10.3389/fbioe.2018.00146 |
work_keys_str_mv | AT akhtarmkalim hydrogenperoxidebasedfluorometricassayforrealtimemonitoringofsamdependentmethyltransferases AT vijaydhanya hydrogenperoxidebasedfluorometricassayforrealtimemonitoringofsamdependentmethyltransferases AT umbreensaima hydrogenperoxidebasedfluorometricassayforrealtimemonitoringofsamdependentmethyltransferases AT mcleanchrisj hydrogenperoxidebasedfluorometricassayforrealtimemonitoringofsamdependentmethyltransferases AT caiyizhi hydrogenperoxidebasedfluorometricassayforrealtimemonitoringofsamdependentmethyltransferases AT campopianodominicj hydrogenperoxidebasedfluorometricassayforrealtimemonitoringofsamdependentmethyltransferases AT loakegaryj hydrogenperoxidebasedfluorometricassayforrealtimemonitoringofsamdependentmethyltransferases |