Cargando…

Image-Based Profiling of Patient-Derived Pancreatic Tumor–Stromal Cell Interactions Within a Micropatterned Tumor Model

Pancreatic cancer is one of the most aggressive cancers with a 5-year patient survival rate of 8.2% and limited availability of therapeutic agents to target metastatic disease. Pancreatic cancer is characterized by a dense stromal cell population with unknown contribution to the progression or suppr...

Descripción completa

Detalles Bibliográficos
Autores principales: Mukundan, Shilpaa, Sharma, Kriti, Honselmann, Kim, Singleton, Amy, Liss, Andrew, Parekkadan, Biju
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6201185/
https://www.ncbi.nlm.nih.gov/pubmed/30348057
http://dx.doi.org/10.1177/1533033818803632
Descripción
Sumario:Pancreatic cancer is one of the most aggressive cancers with a 5-year patient survival rate of 8.2% and limited availability of therapeutic agents to target metastatic disease. Pancreatic cancer is characterized by a dense stromal cell population with unknown contribution to the progression or suppression of tumor growth. In this study, we describe a microengineered tumor stromal assay of patient-derived pancreatic cancer cells to study the heterotypic interactions of patient pancreatic cancer cells with different types of stromal fibroblasts under basal and drug-treated conditions. The population dynamics of tumor cells in terms of migration and viability were visualized as a functional end point. Coculture with cancer-associated fibroblasts increased the migration of cancer cells when compared to dermal fibroblasts. Finally, we imaged the response of a bromodomain and extraterminal inhibitor on the viability of pancreatic cancer clusters surrounding by stroma in microengineered tumor stromal assay. We visualized a codynamic reduction in both cancer and stromal cells with bromodomain and extraterminal treatment compared to the dimethyl sulfoxide-treated group. This study demonstrates the ability to engineer tumor–stromal assays with patient-derived cells, study the role of diverse types of stromal cells on cancer progression, and precisely visualize a coculture during the screening of therapeutic compounds.